



# **EVIX-CX3AA** Application Note

#### **Introduction**

The EVIX-CX3AA solar charging evaluation board demonstrates several IXYS technologies in a simple solar charger for a single AA rechargable alkaline battery. The circuit represents an improvement over the the typical solar cell charger that uses a blocking rectifier diode to prevent back discharge from the battery when no sun light is present. Instead, it uses a MOSFET as the blocking mechanism and a small solar cell to power the gate of the MOSFET to turn it on and off. The use of the MOSFET eliminates the need for an additional more costly solar cell to overcome the forward voltage drop of the blocking diode. Charge rate or speed is not the goal for this evaluation board; it is to convey ideas of solar battery charging by way of a low power, low cost, uncomplicated design.





## Background

Some basic information needs to be covered to better understand what to expect in terms of the evaluation board's performance with regards to solar cell type, lighting conditions in terms of power density, and general industry standards as they relate to battery charging.

#### **Types of Silicon Solar Cells**

Polycrystalline (multicrystalline) solar cells are cut from multifaceted silicon crystal resulting in inherent flaws. They have lower power conversion efficiency (12-13%) than monocrystalline cells. They're commonly found in outdoor applications and have a spectral sensitivity range of 500 to 1100 nm. Polycrystalline cells have a "flaked" or "shattered" appearance.

Monocrystalline cells are cut from a single grown crystal of silicon. They have higher power conversion efficiency (15-19%) than polycrystalline and are more expensive to manufacture because of the complicated crystal growth process involved. With a wide spectral sensitivity range of 300 nm (near-ultraviolet) to 1100 nm (near-infrared), which includes the visible light spectrum (400 to 700 nm), they can be used both indoors and outdoors. Monocrystalline cells have a uniform dark blue or dark grey appearance.

Amorphous cells are not crystalline but instead created by applying a thin layer of silicon directly onto various materials such as glass or metal. Amorphous have low power conversion efficiency (5%) and suffer from light-induced degradation that reduces output 10% or more in the first 100 hours of operation. With a spectral sensitivity range of 300 to 600 nm they are not sensitive to the upper light spectrum and cannot take advantage of natural sunlight. They're commonly used indoors in very low power products such as calculators and clocks.

IXYS SolarBITs are monocrystalline cells made of float zone silicon that has far fewer impurities than standard CZ silicon. The result is a solar cell with the best combination of efficiency and spectrum sensitivity for indoor and outdoor use.

#### SolarBIT Description

XOB17-12x1 SolarBITs are monocrystalline, high-efficiency solar cells in a surface mount package that can be reflow soldered. They're extremely robust and can be used in harsh environments.

SolarBITs have a very high (17%) power conversion efficiency, which means that 17% of the light energy is converted into electrical energy. They're extremely useful in applications requiring solar power generation in a limited space.

IXYS cells can be used in indoor and outdoor applications because they have a wide spectral sensitivity, 300 to 1100 nm. However, the output power of a solar cell is proportional (over a wide range) to the incoming light energy, and irradiance is generally much higher outdoors. The values in the data sheet are measured at "standard condition" of 1 sun, which is equal to 1000W per square meter sunlight irradiance at a defined light spectrum (air mass of 1.5) and 25°C cell temperature.

The SolarBIT comes in several different voltage and current configurations. Please see the website for further information. www.ixys.com



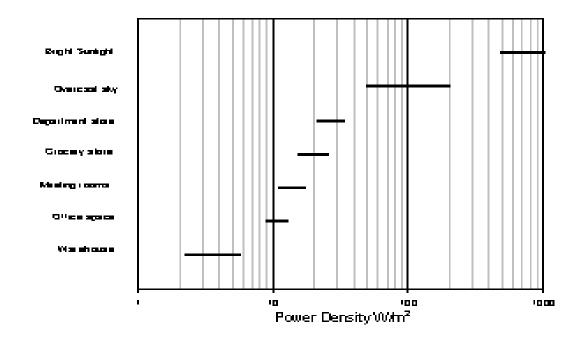



Fig. 2 Relative Light Power Densities

## **Relative Lighting Power Density**

Figure 2 compares relative power density for various lighting conditions in units of Watts per square meter (W/m<sup>2</sup>). The reference standard condition is 1 Sun and is equal to 1000 Watts per square meter of sunlight irradiance at a constant 25°C cell temperature and at 1.5 Air Mass (Air Mass stands for a well defined light spectrum which appears if the sunlight goes through the earth's athmosphere at a defined angle). As the chart clearly shows, the power density of typical indoor lighting is dramatically lower than that of sunlight. Not only is irradiance from indirect and artificial light lower; the spectrum is also narrower. In typical Office Space lighting with a spectrum produced from incandescent or halogen light bulbs, the power output may be roughly 100 times less than bright sunlight. It may be 200 to 500 times less with fluorescent lighting due to the further limited spectrum.

#### **General Industry Standards for Batteries**

The primary rating of a battery is its capacity, symbol C, which refers to its ability to deliver current (power) while discharging over time. Capacity is stated in either milliamphours (mAh) or amp-hours (Ah) and increases slightly with lower drain current and higher temperature. Because these conditions affect capacity, additional manufacturer data typically includes a specified discharge time period, temperature, and a voltage cutoff point (such as 0.8 V for alkalines). For example, if an alkaline battery provides 50 mA for 20 hours until it discharges to 0.8 V (95% exhausted), then its capacity is 50 mA x 20 hours = 1000 mAh for that cutoff voltage.



In the opposite sense, the charge rate capacity is the ability to supply current (power) over time to the battery. Trickle charging of alkaline cells is usually done at 0.1C or less. The EVIX-CX3AA evaluation board charges with a maximum current of about 40 mA if exposed to direct bright sunlight (1 Sun), so a 1000 mAh battery will require 1000 mAh/40 mA or 25 hours to charge.

There are a number of battery chemistries available in AA size packages, but we recommend using the rechargeable alkaline cell supplied with the evaluation board for best performance.

## **Circuit Operation and Description of Components**

## **Circuit Operation**

Figure 3 is the schematic diagram of the evaluation board. The board contains three solar cells to provide charging power. A power MOSFET prevents the battery from discharging through the solar cell array during low light conditions when the solar array output voltage sinks below the battery voltage. A CPC1832N micro power solar cell turns the MOSFET on when light is present. A resistor in parallel with the CPC1832N prevents the gate from accumulating charge and partially turning on in very low light conditions.

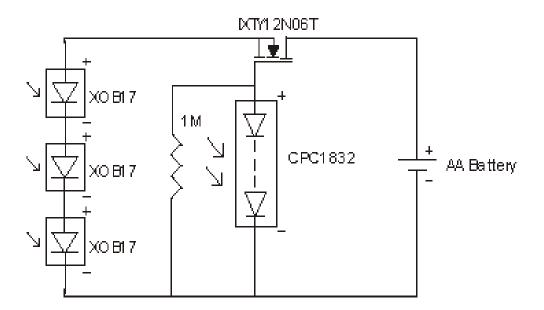



Fig. 3 Schematic Diagram



#### **Component Description**

#### IXYS XOB17-12x1 Solar Cell

The battery charging current is generated by three series-connected IXYS XOB17-12x1 SolarBITs. Each of these monocrystalline, high-efficiency solar cells generates 0.63 V open circuit voltage and 42 mA short circuit current (0.51 V and 39 mA at the Maximum Power Point at 1 Sun irradiance). Their small size and very high power conversion efficiency makes these cells ideal for portable devices with limited space to accommodate solar cells, such as cell phones, PDAs, MP3 players, GPS systems, and remote low power systems and sensors. These applications are very different from those involving arrays of polycrystalline panels and their associated higher power levels.

#### **IXYS IXTY12N06T Power MOSFET**

The purpose of the power MOSFET in circuit is to serve as a blocking mechanism. It prevents the battery from discharging back through the solar cells when the output voltage from the solar cells is lower than the battery, such as during low light conditions and night time hours. While the blocking duty could be performed by a rectifier diode, the MOSFET imposes no diode forward voltage drop penalty and eliminates the need for additional, more costly, solar cells to overcome the voltage drop.

## Clare CPC1832N Solar Cell

The Clare CPC1832N solar cell serves to provide gate voltage to the blocking MOSFET, turning the MOSFET on when the cells are exposed to sunlight and off at darkness. The CPC1832N's wavelength sensitivity lies within the upper spectral range (infrared) so the cell needs to be exposed to direct sunlight for charging to occur. It's current output is only in the microampere (uA) range, but its 8V output is sufficient to overcome the gate threshold level of the blocking MOSFET and the additional 1.5V present in the MOSFET source to ground path.

#### **IXYS Solar AA Battery**

The 1.5V AA battery provided with the evaluation board is a rechargeable alkaline of Zinc-Manganese Dioxide (Zn/MnO<sub>2</sub>) construction. Compared to a carbon zinc battery, it has higher energy density, lower internal resistance, and better low temperature performance. The capacity of the battery for use in general applications is listed in Figure 4.

| Application        | Condition                 | Minimum Average |
|--------------------|---------------------------|-----------------|
| Cassette           | 10 ohms 1 hr/day to 0.9V  | 18.0 hrs        |
| Motor/Toy          | 3.9 ohms 1 hr/day to 0.8V | 6.8 hrs         |
| Radio              | 43 ohms 4 hr/day to 0.9V  | 85 hrs          |
| Pulse test1.8 ohms | 15 sec/min to 0.9V        | 600 pulses      |
| Photo flash        | 1000 mA continuous to 1V  | 27 mins         |

Figure 4. Battery Capacity Table



## **Test Results**

#### **Battery Discharge Test**

To provide an additional set of data for the battery capacity, a 22-ohm resistor was connected across a fresh battery to continuously discharge it down to 0.8V. The voltage across the resistor was measured during the test (Figure 5) and the resultant current was then calculated (Figure 6). The battery was discharged a little more than it should have as the capacity dropped off rather quickly after a certain point was reached. Using the average current over the time it took the battery to reach 0.8V we can calculate the apparent capacity: 55 mA x 34 hrs = 1870 mAh.

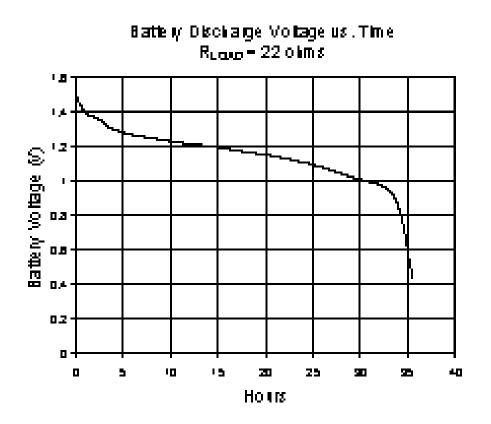



Fig. 5 Battery Discharge Voltage Chart



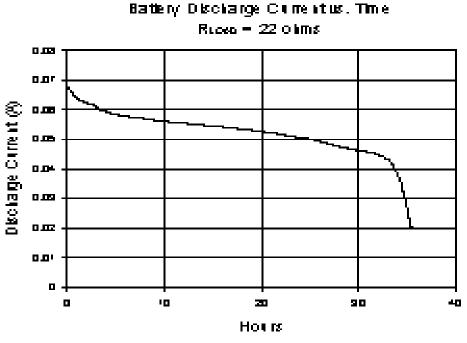



Fig. 6 Battery Discharge Current

#### **Battery Charge Test**

Using the battery that was discharged in the previous section, an experiment was run to see how long it would take to recharge it using solar power. The current from the solar cells was measured to monitor charging progress. No special or fixed conditions were used. The battery and charger were simply placed outside at our facility in Fort Collins, Colorado in August, and sun conditions and charging current measured.

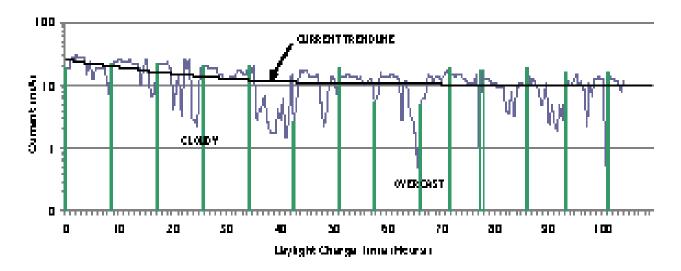



Fig. 7 Battery Charging Profile



#### Conclusion

The purpose of this application note is to discuss some general topics as they relate to solar battery charging, including solar cells and basic AA battery charging. This simple eval board cannot replace a sophisticated battery charger with charge control and monitoring, but it does illustrate the movement of charge ("free electricity") from the solar cells to a storage battery with relatively high efficiency and low loss.

A lot of variables are in play when it comes to solar charging. The jagged line in the solar charging profile of Figure 7 shows common effects of atmospheric conditions, from full sun to slight haze to broken clouds to full overcast. Sunlight early and late in the day travels through more atmosphere and denser air. Charging was halted on a few occasions due to rain. But as the trend line shows, charge is transferred to the battery over time resulting in increased battery voltage and the resulting tapering off of charging current.

#### **Device Datasheet Links**

IXYS XOB17 Solar Cell http://ixdev.ixys.com/DataSheet/XOB17-Solar-Bit-Datasheet Mar-2008.pdf

IXYS IXTY12N06T Power MOSFET http://ixdev.ixys.com/DataSheet/99947.pdf

Clare CPC1832N Solar Cell http://www.clare.com/home/pdfs.nsf/www/CPC1832.pdf/\$file/CPC1832.pdf

# **EVIX-CX3AA Bill Of Materials**

| <u>Otv</u> | Part Description | Part Number             |
|------------|------------------|-------------------------|
| 3          | SolarBIT         | IXYS XOB17-12x1         |
| 1          | Solar Bulb       | Clare CPC1832           |
| 2          | Battery clip     | Keystone 92             |
| 1          | MOSFET           | IXYS IXTY12N06T         |
| 1          | Resistor, 1M     | Vishay CRCW08051M00FKEA |
| 1          | PC board         |                         |

