
VRbot Communication Protocol
Revision 1.4

Table of contents

Protocol and Interface Basics...............................2

Command Details...3
CMD_BREAK..3
CMD_SLEEP..3
CMD_KNOB...3
CMD_LEVEL...3
CMD_LANGUAGE..3
CMD_TIMEOUT..4
CMD_RECOG_SI...4
CMD_TRAIN_SD...4
CMD_GROUP_SD...4
CMD_UNGROUP_SD....................................4
CMD_RECOG_SD ..4
CMD_ERASE_SD ...4
CMD_NAME_SD ..5
CMD_COUNT_SD ..5
CMD_DUMP_SD ..5
CMD_MASK_SD ..5
CMD_RESETALL ...5
CMD_ID ...5
CMD_DELAY ..5
CMD_BAUDRATE ..5

Status Details..6
STS_MASK...6
STS_COUNT..6
STS_AWAKEN...6

STS_DATA..6
STS_ERROR...6
STS_INVALID..6
STS_TIMEOUT..6
STS_INTERR..6
STS_SUCCESS...7
STS_RESULT...7
STS_SIMILAR..7
STS_OUT_OF_MEM.....................................7
STS_ID..7

Arguments Mapping...7
ARG_MIN...7
ARG_MAX...7
ARG_ZERO..7
ARG_ACK..7

Communication Examples...................................8
(1)Recommended wake up procedure:............8
(2)Recommended setup procedure:.................8
(3)Recognition of a built-in SI command:.......8
(4)Adding a new SD command:......................9
(5)Training an SD command:........................10
(6)Read used command groups:....................10
(7)Read how many commands in a group:....11
(8)Read a user defined command:.................11

Built-in Command Sets......................................12

Error codes...13

Protocol and Interface Basics
Communication with the VRbot module uses a standard UART interface compatible with 3.3-5V TTL logical
levels, according to the powering voltage VCC.

A typical connection to an MCU-based host:

The initial configuration at power on is 9600 baud, 8 bit data, No parity, 1 bit stop. The baud rate can be
changed later to operate in the range 9600 - 115200 baud.

The communication protocol only uses printable ASCII characters, which can be divided in two main groups:

• Command and status characters, respectively on the TX and RX lines, chosen among lower-case letters
• Command arguments or status details, again on the TX and RX lines, spanning the range of capital

letters

Each command sent on the TX line, with zero or more additional argument bytes, receives an answer on the RX
line in the form of a status byte followed by zero or more arguments.

There is a minimum delay before each byte sent out from the VRbot module to the RX line, that is initially set
to 20 ms and can be selected later in the ranges 0 - 9 ms, 10 - 90 ms, 100 ms - 1 s. That accounts for slower or
faster host systems and therefore suitable also for software-based serial communication (bit-banging).

The communication is host-driven and each byte of the reply to a command has to be acknowledged by the host
to receive additional status data, using the space character. The reply is aborted if any other character is
received and so there is no need to read all the bytes of a reply if not required.

Invalid combinations of commands or arguments are signaled by a specific status byte, that the host should be
prepared to receive if the communication fails. Also a reasonable timeout should be used to recover from
unexpected failures.

If the host does not send all the required arguments of a command, the command is ignored by the module,
without further notification, and the host can start sending another command.

The module automatically goes to lowest power sleep mode after power on. To initiate communication, send
any character to wake-up the module.

ETX

ERX

RX

TX

VRbot Host MCU

Command Details
Format of command strings accepted by the module. Please note that numeric arguments of command requests
are mapped to upper-case letters (see the related section).

CMD_BREAK
'b' (62h) Abort recognition in progress if any or do nothing

Known issues:
In firmware ID 0, any other character received during recognition will prevent this command from
stopping recognition, that will continue until timeout or other recognition results.

Expected replies: STS_SUCCESS, STS_INTERR

CMD_SLEEP
's' (73h) Go to the specified power-down mode

[1] Sleep mode (0-8):

0 = wake on received character only
1 = wake on whistle or received character
2 = wake on loud sound or received character
3-5 = wake on double clap (with varying sensitivity) or received character
6-8 = wake on triple clap (with varying sensitivity) or received character

Expected replies: STS_SUCCESS

CMD_KNOB
'k' (6Bh) Set SI knob to specified level

[1] Confidence threshold level (0-4):

0= loosest:more valid results
2= typical value (default)
4= tightest:fewer valid results

NOTE: knob is ignored for trigger words

Expected replies: STS_SUCCESS

CMD_LEVEL
'v' (76h) Set SD level

[1] Strictness control setting (1-5):

1 = easy, 2 = default, 5 = hard

A higher setting will result in more recognition errors.

Expected replies: STS_SUCCESS

CMD_LANGUAGE
'l' (6Ch) Set SI language

[1] Language (0 = English, 1 = Italian, 2 = Japanese, 3 = German)

Expected replies: STS_SUCCESS

CMD_TIMEOUT
'o' (6Fh) Set recognition timeout

[1] Timeout (-1 = default, 0 = infinite, 1-31 = seconds)

Expected replies: STS_SUCCESS

CMD_RECOG_SI
'i' (69h) Activate SI recognition from specified wordset

[1] Wordset index (0-3)

Expected replies: STS_SIMILAR, STS_TIMEOUT, STS_ERROR

CMD_TRAIN_SD
't' (74h) Train specified SD/SV command

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

[2] Command position (0-31)

Expected replies: STS_SUCCESS, STS_RESULT, STS_SIMILAR, STS_TIMEOUT, STS_ERROR

CMD_GROUP_SD
'g' (67h) Insert new SD/SV command

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

[2] Position (0-31)

Expected replies: STS_SUCCESS, STS_OUT_OF_MEM

CMD_UNGROUP_SD
'u' (75h) Remove SD/SV command

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

[2] Position (0-31)

Expected replies: STS_SUCCESS

CMD_RECOG_SD
'd' (64h) Activate SD/SV recognition

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

Expected replies: STS_RESULT, STS_SIMILAR, STS_TIMEOUT, STS_ERROR

CMD_ERASE_SD
'e' (65h) Erase training of SD/SV command

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

[2] Command position (0-31)

Expected replies: STS_SUCCESS

CMD_NAME_SD
'n' (6Eh) Label SD/SV command

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

[2] Command position (0-31)

[3] Length of label (0-31)

[4-n] Text for label (ASCII characters from 'A' to '`')

Expected replies: STS_SUCCESS

CMD_COUNT_SD
'c' (63h) Request count of SD/SV commands in the specified group

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

Expected replies: STS_COUNT

CMD_DUMP_SD
'p' (70h) Read SD/SV command data (label and training)

[1] Group index (0 = trigger, 1-15 = generic, 16 = password)

[2] Command position (0-31)

Expected replies: STS_DATA

CMD_MASK_SD
'm' (6Dh) Request bit-mask of non-empty groups

Expected replies: STS_MASK

CMD_RESETALL
'r' (72h) Reset all commands and groups

'R' (52h) Confirmation character

Expected replies: STS_SUCCESS

CMD_ID
'x' (78h) Request firmware identification

Expected replies: STS_ID

CMD_DELAY
'y' (79h) Set transmit delay

[1] Time (0-10 = 0-10 ms, 11-19 = 20-100 ms, 20-28 = 200-1000 ms)

Expected replies: STS_SUCCESS

CMD_BAUDRATE
'a' (61h) Set communication baud-rate

[1] Speed mode (1 = 115200, 2 = 57600, 3 = 38400, 6 = 19200, 12 = 9600)

Expected replies: STS_SUCCESS

Status Details
Replies to commands follow this format. Please note that numeric arguments of status replies are mapped to
upper-case letters (see the related section).

STS_MASK
'k' (6Bh) Mask of non-empty groups

[1-8] 4-bit values that form 32-bit mask, LSB first

In reply to: CMD_MASK_SD

STS_COUNT
'c' (63h) Count of commands

[1] Integer (0-31)

In reply to: CMD_COUNT_SD

STS_AWAKEN
'w' (77h) Wake-up (back from power-down mode)

In reply to: Any character after power on or sleep mode

STS_DATA
'd' (64h) Provide command data

[1] Training information (0-7 = training count, +8 = SD/SV conflict, +16 = SI conflict)

[2] Conflicting command position (0-31)

[3] Length of label (0-31)

[4-n] Text of label (ASCII characters from 'A' to '`')

In reply to: CMD_DUMP_SD

STS_ERROR
'e' (65h) Signal recognition error

[1-2] Two 4-bit values that form 8-bit error code (80h = NOTA, otherwise see FluentChip error codes)

In reply to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD

STS_INVALID
'v' (76h) Invalid command or argument

In reply to: Any invalid command or argument

STS_TIMEOUT
't' (74h) Timeout expired

In reply to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD

STS_INTERR
'i' (69h) Interrupted recognition

In reply to: CMD_BREAK while in training or recognition

STS_SUCCESS
'o' (6Fh) OK or no errors status

In reply to: CMD_BREAK, CMD_DELAY, CMD_BAUDRATE, CMD_TIMEOUT, CMD_KNOB,
CMD_LEVEL, CMD_LANGUAGE, CMD_SLEEP, CMD_GROUP_SD, CMD_UNGROUP_SD,
CMD_ERASE_SD, CMD_NAME_SD, CMD_RESETALL

STS_RESULT
'r' (72h) Recognised SD/SV command or Training similar to SD/SV command

[1] Command position (0-31)

In reply to: CMD_RECOG_SD, CMD_TRAIN_SD

STS_SIMILAR
's' (73h) Recognised SI word or Training similar to SI word

[1] Word index (0-31)

In reply to: CMD_RECOG_SI, CMD_RECOG_SD, CMD_TRAIN_SD

STS_OUT_OF_MEM
'm' (6Dh) Memory full error

In reply to: CMD_GROUP_SD

STS_ID
'x' (78h) Provide firmware identification

[1] Version identifier (0)

In reply to: CMD_ID

Arguments Mapping
These are the characters used to represent integer values in the range -1 to 31 for command or status arguments.

ARG_MIN
'@' (40h) Minimum argument value (-1)

ARG_MAX
'`' (60h) Maximum argument value (+31)

ARG_ZERO
'A' (41h) Zero argument value (0)

ARG_ACK
' ' (20h) Read more status arguments

Communication Examples
These are some examples of actual command and status strings exchanged with the VRbot module by host
programs and the expected program flow with pseudo-code sequences.

The pseudo-instruction SEND transmits the specified character to the module, while RECEIVE waits for a reply
character (a timeout is not explicitly handled for simple commands, but should be always implemented if
possible).

Also, the OK and ERROR routines are not explicitly defined, since they are host and programming language
dependent, but appropriate code should be written to handle both conditions.

Lines beginning with a # (sharp) character are comments.

Please note that in a real programming language it would be best to define some constants for the command and
status characters, as well as for mapping numeric arguments, that would be used throughout the program, to
minimize the chance of repetition errors and clarify the meaning of the code.

See the header file protocol.h for sample definitions that can be used in a C language environment.

Here below all the characters sent and received are written explicitly in order to clarify the communication
protocol detailed in the previous sections.

(1) Recommended wake up procedure:

wake up or interrupt recognition or do nothing
(use a timeout or max repetition count)
DO

SEND 'b'
LOOP UNTIL RECEIVE = 'o'

(2) Recommended setup procedure:

ask firmware id
SEND 'x'
IF NOT RECEIVE = 'x' THEN ERROR

send ack and read status (expecting id=0)
SEND ' '
IF RECEIVE = 'A' THEN OK ELSE ERROR

set language for SI recognition (Japanese)
SEND 'l'
SEND 'C'
IF RECEIVE = 'o' THEN OK ELSE ERROR

set timeout (5 seconds)
SEND 'o'
SEND 'F'
IF RECEIVE = 'o' THEN OK ELSE ERROR

(3) Recognition of a built-in SI command:

start recognition in wordset 1
SEND 'i'
SEND 'B'
wait for reply:

(if 5s timeout has been set, wait for max 6s then abort
otherwise trigger recognition could never end)
result = RECEIVE

IF result = 's' THEN
successful recognition, ack and read result
SEND ' '
command = RECEIVE – 'A'
perform actions according to command

ELSE IF result = 't' THEN
timed out, no word spoken

ELSE IF result = 'e' THEN
error code, ack and read which one
SEND ' '
error = (RECEIVE – 'A') * 16
SEND ' '
error = error + (RECEIVE – 'A')
perform actions according to error

ELSE
invalid request or reply
ERROR

END IF

(4) Adding a new SD command:

insert command 0 in group 3
SEND 'g'
SEND 'D'
SEND 'A'
IF RECEIVE = 'o' THEN OK ELSE ERROR

set command label to “ARDUINO_2009”
SEND 'g'
SEND 'D'
SEND 'A'
SEND 'M' # name length (12 characters)
SEND 'A'
SEND 'R'
SEND 'D'
SEND 'U'
SEND 'I'
SEND 'N'
SEND 'O'
SEND '_'
encode each digit with a ^ prefix
followed by the digit mapped to upper case letters
SEND '^'
SEND 'C'
SEND '^'
SEND 'A'
SEND '^'
SEND 'A'
SEND '^'
SEND 'J'
IF RECEIVE = 'o' THEN OK ELSE ERROR

(5) Training an SD command:

repeat the whole training procedure twice for best results
train command 0 in group 3
SEND 't'
SEND 'D'
SEND 'A'
wait for reply:
(default timeout is 3s, wait for max 1s more then abort)
result = RECEIVE

IF RECEIVE = 'o' THEN
training successful
OK

ELSE IF result = 'r' THEN
training saved, but spoken command is similar to
another SD command, read which one
SEND ' '
command = RECEIVE – 'A'
may notify user and erase training or keep it

ELSE IF result = 's' THEN
training saved, but spoken command is similar to
another SI command (always trigger, may skip reading)
SEND ' '
command = RECEIVE – 'A'
may notify user and erase training or keep it

ELSE IF result = 't' THEN
timed out, no word spoken or heard

ELSE IF result = 'e' THEN
error code, ack and read which one
SEND ' '
error = (RECEIVE – 'A') * 16
SEND ' '
error = error + (RECEIVE – 'A')
perform actions according to error

ELSE
invalid request or reply
ERROR

END IF

(6) Read used command groups:

request mask of groups in use
SEND 'm'
IF NOT RECEIVE = 'k' THEN ERROR
read mask to 32 bits variable
in 8 chunks of 4 bits each
SEND ' '
mask = (RECEIVE – 'A')
SEND ' '
mask = mask + (RECEIVE – 'A') * 24

SEND ' '
mask = mask + (RECEIVE – 'A') * 28

...
SEND ' '
mask = mask + (RECEIVE – 'A') * 224

(7) Read how many commands in a group:

request command count of group 3
SEND 'c'
SEND 'D'
IF NOT RECEIVE = 'c' THEN ERROR
ack and read count
SEND ' '
count = RECEIVE - 'A'

(8) Read a user defined command:

dump command 0 in group 3
SEND 'p'
SEND 'D'
SEND 'A'
IF NOT RECEIVE = 'd' THEN ERROR
read command data
SEND ' '
training = RECEIVE – 'A'
extract training count (2 for a completely trained command)
tr_count = training AND 7
extract flags for conflicts (SD or SI)
tr_flags = training AND 24
read index of conflicting command (same group) if any
SEND ' '
conflict = RECEIVE – 'A'
read label length
SEND ' '
length = RECEIVE – 'A'
read label text
FOR i = 0 TO length - 1
 SEND ' '
 label[i] = RECEIVE
 # decode digits
 IF label[i] = '^' THEN
 SEND ' '
 label[i] = RECEIVE – 'A' + '0'
 END IF
NEXT

Built-in Command Sets
In the tables below a list of all built-in commands for each supported language, along with group index (trigger
or wordset), command index and language identifier to use with the communication protocol.

o

Language
0 1 2 3

Trigger/Wordset Command Index English (US) Italian Japanese German

0 0 robot robot ロボット roboter

1

0 action azione アクション aktion

1 move vai ススメ gehe

2 turn gira マガレ wende

3 run corri ハシレ lauf

4 look guarda ミロ schau

5 attack attacca コーゲキ attacke

6 stop fermo トマレ halt

7 hello ciao こんにちわ hallo

2

0 left a sinistra ヒダリ nach_links

1 right a destra ミギ nach_rechts

2 up in alto ウエ hinauf

3 down in basso シタ hinunter

4 forward avanti マエ vorwärts

5 backward indietro ウシロ rückwärts

3

0 zero zero ゼロ null

1 one uno いち eins

2 two due ニ zwei

3 three tre サン drei

4 four quattro ヨン vier

5 five cinque ゴ fünf

6 six sei ロク sechs

7 seven sette ナナ sieben

8 eight otto ハち acht

9 nine nove クュー neun

10 ten dieci ジュー zehn

Error codes
In the table below a list of some (the most useful) error codes that may be returned by training or recognition
commands.

03h ERR_DATACOL_TOO_NOISY too noisy

04h ERR_DATACOL_TOO_SOFT spoke too soft

05h ERR_DATACOL_TOO_LOUD spoke too loud

06h ERR_DATACOL_TOO_SOON spoke too soon

07h ERR_DATACOL_TOO_CHOPPY too many segments/too complex

11h ERR_RECOG_FAIL recognition failed

12h ERR_RECOG_LOW_CONF recognition result doubtful

13h ERR_RECOG_MID_CONF recognition result maybe

14h ERR_RECOG_BAD_TEMPLATE invalid SD/SV command stored in memory

17h ERR_RECOG_DURATION bad pattern durations

80h ERR_NOT_A_WORD recognized word is not in vocabulary

The first group of codes (03h – 07h) are due to errors in the way of speaking to the VRbot or disturbances in the
acquired audio signal, that may depend on the surrounding environment.

The second group (11h – 13h) indicate an insufficient score of the recognized word (from lowest to highest).
Acceptance of lower score results may be allowed by lowering the “knob” or “level” settings, respectively for
built-in and custom commands (see CMD_KNOB and CMD_LEVEL).

A third group of codes (14h – 17h) reports errors in the stored commands, that may be due to memory
corruption. We suggest you check power level and connections, then erase all the commands in the faulty group
and train them again.

The last code (80h) means that a word has been recognized that is not in the specified built-in sets. This is due
to how Speaker Independent recognition works and should be ignored.

	Protocol and Interface Basics
	Command Details
	CMD_BREAK
	CMD_SLEEP
	CMD_KNOB
	CMD_LEVEL
	CMD_LANGUAGE
	CMD_TIMEOUT
	CMD_RECOG_SI
	CMD_TRAIN_SD
	CMD_GROUP_SD
	CMD_UNGROUP_SD
	CMD_RECOG_SD
	CMD_ERASE_SD
	CMD_NAME_SD
	CMD_COUNT_SD
	CMD_DUMP_SD
	CMD_MASK_SD
	CMD_RESETALL
	CMD_ID
	CMD_DELAY
	CMD_BAUDRATE

	Status Details
	STS_MASK
	STS_COUNT
	STS_AWAKEN
	STS_DATA
	STS_ERROR
	STS_INVALID
	STS_TIMEOUT
	STS_INTERR
	STS_SUCCESS
	STS_RESULT
	STS_SIMILAR
	STS_OUT_OF_MEM
	STS_ID

	Arguments Mapping
	ARG_MIN
	ARG_MAX
	ARG_ZERO
	ARG_ACK

	Communication Examples
	(1) Recommended wake up procedure:
	(2) Recommended setup procedure:
	(3) Recognition of a built-in SI command:
	(4) Adding a new SD command:
	(5) Training an SD command:
	(6) Read used command groups:
	(7) Read how many commands in a group:
	(8) Read a user defined command:

	Built-in Command Sets
	Error codes

