iWRAP 2.2.0

```
UserGGuide
Version 3.3
Wednesday, September 12, 200%
```


Copyright © 2000-2007 Bluegiga Technologies

All rights reserved.
Bluegiga Technologies assumes no responsibility for any errors, which may appear in this manual. Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. Bluegiga Technologies' products are not authorized for use as critical components in life support devices or systems.

The WRAP is a registered trademark of Bluegiga Technologies
The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA, and is licensed to Bluegiga Technologies.

All other trademarks listed herein are owned by their respective owners.

Contents:

1. I ntroduction 14
2. Getting Started 16
3. iWRAP Modes 17
3.1 Command Mode 18
3.2 Data Mode 18
3.3 Multiplexing Mode. 19
3.4 Audio Mode 19
4. Technical Details 20
5. Usage 21
5.1 Typographical Conventions 22
5.2 CALL. 23
5.2.1 Syntax 23
5.2.2 Examples 24
5.3 CLOSE 26
5.3.1 Syntax 26
5.3.2 Examples 26
5.4 INQUIRY 27
5.4.1 Syntax 27
5.4.2 Examples 29
5.5 IC 30
5.5.1 Syntax 30
5.5.2 Examples 30
5.6 LIST 31
5.6.1 Syntax 31
5.6.2 Examples 33
5.7 NAME 34
5.7.1 Syntax 34
5.7.2 Examples 34
5.8 RESET 35
5.8.1 Syntax 35
5.9 SELECT 36
5.9.1 Syntax 36
5.9.2 Examples 36
5.10 INFO 37
5.10.1 Syntax 37
5.10.2 Examples 37
5.11 AUTH 38
5.11.1 Syntax 38
5.11.2 Examples 38
6. SET 40
6.1.1 Syntax of SET Commands 40
6.1.2 Examples 41
6.2 SET PROFILE 42
6.2.1 Syntax 42
6.2.2 Examples 43
6.3 SET BT BDADDR 44
6.3.1 Syntax 44
6.4 SET BT NAME 45
6.4.1 Syntax 45
6.5 SET BT CLASS 46
6.5.1 Syntax 46
6.6 SET BT LAP 47
6.6.1 Syntax 47
6.7 SET BT AUTH 49
6.7.1 Syntax 49
6.8 SET BT PAIR 50
6.8.1 Syntax 50
6.9 SET BT PAGEMODE 51
6.9.1 Syntax 51
6.10 SET BT ROLE 53
6.10.1 Syntax 53
6.11 SET BT SNIFF 55
6.11.1 Syntax 55
6.12 SET BT POWER 57
6.12.1 Syntax 57
6.12.2 Examples 57
6.13 SET CONTROL AUTOCALL 59
6.13.1 Syntax 59
6.13.2 Examples 60
6.14 SET CONTROL BAUD. 62
6.14.1 Syntax 62
6.14.2 Examples 63
6.15 SET CONTROL CD 64
6.15.1 Syntax. 64
6.16 SET CONTROL CONFIG 65
6.16.1 Syntax. 65
6.16.2 Examples 66
6.17 SET CONTROL ECHO. 67
6.17.1 Syntax. 67
6.18 SET CONTROL ESCAPE 68
6.18.1 Syntax 68
6.18.2 Examples 69
6.19 SET CONTROL INIT 70
6.19.1 Syntax 70
6.19.2 Examples 70
6.20 SET CONTROL MUX 71
6.20.1 Syntax 71
6.20.2 Examples 71
6.20.3 Using Multiplexing Mode 72
6.21 SET CONTROL BIND 75
6.21.1 Syntax. 75
6.21.2 Examples 76
6.22 SET CONTROL MSC 77
6.22.1 Syntax 77
6.22.2 Examples 78
7. SET \{link_id\} 79
7.1 SET \{link_id\} ACTIVE 80
7.1.1 Syntax 80
7.1.2 Examples 80
7.2 SET \{link_id\} MASTER 81
7.2.1 Syntax 81
7.2.2 Examples 81
7.3 SET \{link_id\} SLAVE 82
7.3.1 Syntax 82
7.4 SET \{link_id\} PARK 83
7.4.1 Syntax 83
7.4.2 Examples 83
7.5 SET \{link_id\} SNIFF 84
7.5.1 Syntax 84
7.6 SET \{link\} MSC 85
7.6.1 Syntax 85
7.6.2 Examples 85
7.7 TESTMODE 86
7.7.1 Syntax 86
7.8 BER \{link_id\} 87
7.8.1 Syntax 87
7.8.2 Examples 87
7.9 RSSI \{link_id\} 88
7.9.1 Syntax 88
7.9.2 Examples 88
7.10 TXPOWER 89
7.10.1 Syntax. 89
7.10.2 Examples 89
7.11 SDP 90
7.11.1 Syntax 90
7.11.2 Examples 90
7.12 SDP ADD 92
7.12.1 Syntax 92
7.12.2 Examples 92
7.13 SLEEP 93
7.13.1 Syntax 93
7.14 SCO ENABLE 94
7.14.1 Syntax 94
7.15 SCO OPEN 95
7.15.1 Syntax 95
7.15.2 Examples 96
7.16 BOOT 97
7.16.1 Syntax 97
7.16.2 Examples 97
7.17 ECHO 98
7.17.1 Syntax 98
7.17.2 Examples 98
7.18 PING \{link_id\} 99
7.18.1 Syntax 99
7.18.2 Examples 99
7.19 TEST 100
7.19.1 Syntax 100
7.19.2 Examples 102
8. iWRAP Events 103
8.1 CONNECT 104
8.1.1 Syntax 104
8.2 INQUIRY_PARTIAL 105
8.2.1 Syntax 105
8.3 NO CARRIER 106
8.3.1 Syntax 106
8.4 READY 107
8.4.1 Syntax 107
8.5 NAME 108
8.5.1 Syntax 108
8.6 NAME ERROR 109
8.6.1 Syntax 109
8.7 PAIR 110
8.7.1 Syntax 110
8.8 RING 111
8.8.1 Syntax 111
8.9 SYNTAX ERROR 112
8.9.1 Syntax 112
8.10 AUTH 113
8.10.1 Syntax 113
9. iWRAP Error Messages 114
9.1 HCl Errors 114
9.2 RFCOMM Errors 119
10. Useful I nformation 121
10.1 Changing Parameters over RS232 with PSTool 121
10.2 Using BlueTest over RS232 122
10.3 Switching to HCl Firmware 123
10.4 Firmware Updates over SPI 124
10.5 Firmware Updates over UART 124
10.6 Hardware Flow Control 125
10.7 RS232 Connections 126
10.8 PS Keys Used by iWRAP Firmware 127
10.9 Bluetooth Profiles Overview 128
10.9.1 Generic Access Profile (GAP) 128
10.9.2 RFCOMM 128
10.9.3 Service Discovery Protocol (SDP) 128
10.9.4 Serial Port Profile (SPP) 128
10.9.5 Hands-Free Profile (HFP) 128
10.9.6 Dial-up Networking Profile (DUN) 129
10.9.7 Object Push Profile (OPP) 129
10.10 Bluetooth Power Saving 130
10.11 HFP and HFP-AG commands 131
10.12 HFP and HFP-AG messaging 132
10.13 Bluetooth profile UUIDs. 134
11. Troubleshooting 138
11.1 I get no response from iWRAP? 138
11.2 I changed ‘UART Baud rate’ key, but it didn’t seem to work? 138
11.3 Data coming from the UART is corrupted 138
11.4 I'm missing characters when I type ASCII commands. 138
12. Known Issues 139
13. Support 140
14. Related Documentation 141
15. iWRAP Configuration Examples 142
15.1 Simple SPP Slave 142
15.2 Simple SPP Master 144
15.3 Bluetooth Networking with iWRAP and WRAP Access Server 147
15.4 Dial-up Networking 149
15.5 OBEX Object Push Profile Server 150
15.6 iWRAP to iWRAP Audio + Data Connection 152
15.7 iWRAP to Hands-Free Audio Connection 153
15.8 iWRAP to Mobile Phone Audio Connection 154
15.9 Wireless IO Replacement 155
List of Tables:
Table 1: iWRAP modes and transitions 18
Table 2: Technical details 20
Table 3: Power classes as defined in Bluetooth specification 58
Table 4: Multiplexing frame format 72
Table 5: HCl errors 116
Table 6: SDP errors 118
Table 7: RFCOMM errors 120
Table 8: HFP supported commands 131
Table 9: HFP-AG supported commands 131
Table 10: UUIDs and Profiles 137
Table 11: iWRAP known issues 139
List of Figures:
Figure 1: iWRAP Stack 14
Figure 2: iWRAP boot prompt 16
Figure 3: State Transitions 17
Figure 4: Host-iWRAP-Host communication 73
Figure 5: Host-iWRAP-remote device communications 73
Figure 6: RS232 connections 126
Figure 7: Slave configuration 142
Figure 8: Transparent master 144
Figure 9: Configuration for multiple slaves 148
Figure 10: How to open a DUN connection to a mobile phone. 149
Figure 11: Receiving files through OPP 150
Figure 12: Receiving a vCard over OPP 151
Figure 13: ACL data + SCO audio connection setup 152
Figure 14: iWRAP to headset audio connection 153
Figure 15: HFP connection to a mobile phone 154
Figure 16: Wireless IO replacement connection 155

VERSI ON HISTORY

Version:	Author:	Comments:
1.0	MSa	Initial Version, which is beta so information may change
1.1	MSa	Feature updates
1.2	MSa	Build 18 updates
1.3	MSa	Build 19 updates
1.4	MSa	Build 20 updates
1.5	MSa	Build 21 updates + HS comments
1.6	MSa	PAIR event documentation fixed
2.1	MSa	iWRAP 2.2.0 updates
2.2	MSa	Wireless 10 / RS232 connections added
2.3	MSa	Spell checked
2.4	MSa	HFP commands added, Known issues updated, NO CARRIER event typo fixed
2.5	MSa	Minor changes
2.6	MSa	Example 15.8 fixed
2.7	MSa	SET BT SNIFF descr. improved
2.8	MSa	AUTH command / event added. SET CONTROL CONFIG updated.
2.9	MSa	HFP command mappings added
3.0	MSa	PAGEMODE desc. fixed Chapter 10.12 added

3.1	MSa	Error codes updated
3.2	MSa	SET BT SNIFF documentation fixed
3.3	MSa	Typo in MUX frame format fixed

TERMS \& ABBREVIATI ONS

Term or Abbreviation:	Explanation:
BDR	Basic Data Rate
Bluetooth	Set of technologies providing audio and data transfer over shortrange radio connections
bps	Bits per second
CD	Carrier Detect
DTR	Data Terminal Ready
DUN	Dial-Up Networking Profile
EDR	Enhanced Data Rate
HCl	Host Controller Interface
HFP	Hands-Free Profile
HFP-AG	Hands-Free audio Gateway
iWRAP	Interface for WRAP - a trademark registered by Bluegiga Technologies
L2CAP	The Logical Link Control and Adaptation Layer Protocol
OPP	Object Push Profile
PARK state	Bluetooth low power mode
RFCOMM	Serial cable emulation protocol; element of Bluetooth

SNI FF mode	Bluetooth low power mode
SPP	Serial Port Profile
UART	Universal Asynchronous Receiver Transmitter
UUID	Universally Unique Identifier
VM	Virtual Machine
WRAP	Wireless Remote Access Platform; Bluegiga Technologies' wireless product family

1. I NTRODUCTI ON

iWRAP is an embedded firmware running entirely on the RISC processor of WRAP THOR modules. It implements the full Bluetooth protocol stack, as illustrated in the figure below, and no host processor is required to run it. All software layers, including application software, run on the internal RISC processor in a protected user software execution environment known as a Virtual Machine (VM).

The host processor interfaces to iWRAP firmware through one or more of the physical interfaces, which are also shown in the figure below. The most common interfacing is done through the UART interface by using the ASCII commands that iWRAP firmware supports. With these ASCII commands, the host can access Bluetooth functionality without paying any attention to the complexity, which lies in the Bluetooth protocol stack.

The user can write application code, which runs on the host processor and controls iWRAP firmware with ASCII commands. In this way, it is easy to develop Bluetooth powered applications.

Figure 1: iWRAP Stack

In the figure above, a WRAP THOR Bluetooth module equipped with iWRAP firmware is connected to a host system by using the UART interface.

1. If the host system has a processor, software can be used to control iWRAP by using ASCII based commands.
2. If there is no need to control iWRAP, or the host system does not have a processor, iWRAP can be configured to be totally transparent, in which case it only accepts connections or automatically opens them. Not all the functionality will be available with this solution.
3. GPIO lines that WRAP THOR modules offer can also be used together with iWRAP to achieve additional functionality, such as DTR signaling or Carrier Detect signals.
4. PCM interface can be used to transmit audio data over a Bluetooth link.

2. GETTI NG STARTED

To start using iWRAP, you can use, for example, terminal software such as HyperTerminal. When using the terminal software, make sure that the WRAP THOR module is connected to your PC's serial port. By default, iWRAP uses the following UART settings:

- Baud rate: 115200bps
- Data bits: 8
- Stop bits: 1
- Parity bit: No parity
- HW Flow Control: Enabled

When you power up your WRAP THOR module or evaluation kit, you can see the command prompt appear on the screen of the terminal software.

Figure 2: iWRAP boot prompt

3. I WRAP MODES

iWRAP has two operational modes, command mode and data mode. Command mode is the default mode when there are no connections. It is possible to switch between modes at any time when there are one or more active connections. Data mode is not available if there are no active connections, because obviously there is no data available, nor can it be sent anywhere.

- CONNECT
- RING
- Escape sequence
- SELECT cmd.
- NO CARRIER
- Escape sequence
- DTR switch

Figure 3: State Transitions
Switching from data mode to command mode is issued by using the following escape sequence:
<At least 1 second sleep> esc esc esc <at least 1 second sleep>
esc $=$ escape character
or it can also be done by using DTR signals.
The same sequence or the SELECT command can be used to return to data mode.

Note:

- When iWRAP enters command mode, a READY event occurs
(Unless it is masked away by using the "SET CONTROL ECHO" command.)
- The escape character can be changed by using the "SET CONTROL ESCAPE"command.
- DTR mode can be enabled by using the "SET CONTROL ESCAPE" command.

3.1 Command Mode

Command mode is the default mode when iWRAP is powered up. In command mode, ASCII commands can be entered to iWRAP to perform various functions.

Note:

- Incoming data from remote devices is buffered when iWRAP is in command mode.
- Because of the embedded nature of iWRAP, buffering capabilities are low and only small amounts of data can be received to buffers. The amount of data which can be buffered depends on the firmware version and the state of iWRAP. Usually, it is approximately 2 Kbytes, but may vary radically.

3.2 Data Mode

Data mode is the default mode when there are one or more connections. In data mode, all data is sent transparently from UART over the Bluetooth RFCOMM link to the other device and vice versa.

Initial mode	Target mode	Requirements for transition from initial mode to target mode
Command Mode (no active connection) In this mode, ASCII commands can be given to iWRAP.	Data Mode	A connection is successfully created by using the CALL command. (The CONNECT event is used to indicate a successful link creation.) A remote device has connected us. (The RING event is used to indicate incoming connections.)
Data Mode		Command Mode
In this mode, all data can be sent transparently from RS-232 over the Bluetooth RFCOMM link to the other device.	The user switches mode by using escape sequence <1s>esc esc esc<1s> or by setting the DTR low. Alink is terminated (closed by	
the remote device or by link		
loss). (The NO CARRIER event		
is used to indicate link		
termination.)		

Table 1: iWRAP modes and transitions

3.3 Multiplexing Mode

In iWRAP 2.1.0 and newer, there is a special mode called "multiplexing mode". In this mode, iWRAP does not have separate commands or data modes, but data, commands and events are all handled in one single mode. There is, however, a special protocol to separate commands and events from the actual data. This protocol must be used between the host system and iWRAP firmware.

The advantage of this multiplexing mode is that several Bluetooth connections can be handled simultaneously and there is no need to do time consuming data-command-data mode switching.

To learn more about multiplexing mode, please see the description of "SET CONTROL MUX".

3.4 Audio Mode

IWRAP 2.2.0 and newer support several Bluetooth audio profiles, such as Hands-Free and Hands-Free Audio Gateway.

Audio mode is similar to multiplexing mode, that is, data can be transferred and iWRAP commands can be given in the same mode. However, the difference to multiplexing mode is that no special packet mode needs to be used.

4. TECHNI CAL DETAI LS

Feature:	Value:
MAX simultaneous ACL connections	4
MAX simultaneous SCO connections	1
MAX data rate	600Kbps (WT12/WT11 to BT2.0 USB dongle) 550Kbps (WT12/WT11 to WT12/WT11) 450Kbps (WT12/WT11 to BT1.1-BT1.2 device)
MAX UART baud rate	921600 bps
MIN transmission delay	8-15ms
PIN code length	Configurable from 0 to 16 characters
Encryption length	Configurable from 0 to 128 bits
MAX simultaneous pairings	16
MAX Friendly name length	Configurable up to 248 characters
RFCOMM Packet size	Configurable from 21 to 1008
Supported Bluetooth profiles	GAP, SPP, Hands-Free, Hands-Free AudioGateway, OPP*, DUN*
Supported power saving modes	Sniff, Park and deep sleep

Table 2: Technical details
*) Limited support

5. USAGE

iWRAP can be used and controlled from the host system by sending ASCII commands through the UART interface to iWRAP.

When installed and configured, the module can be commanded from the host with the following ASCII commands:

- BER
- CALL
- CLOSE
- HELP
- INFO
- INQUIRY
- IC
- LIST
- NAME
- RSSI
- RESET
- SCO
- SDP
- SELECT
- SET
- SLEEP
- TESTMODE
- TXPOWER
- BCSP_ENABLE
- BOOT
- TEST
- PING
- ECHO

Note:

These commands must end with a line feed " $\backslash \mathbf{n}$ " character.

5.1 Typographical Conventions

The ASCII commands and their usage are described further in this chapter. Commands and their output synopsis are presented as follows:

Synopsis:

COMMAND \{required parameter\} [optional parameter] STATIC TEXT [$2^{\text {ND }}$ OPTI ONAL PARAMETER]

Command parameters, on the other hand, are described like this:

Description:	
parameter	Description

Responses to the command are described as in the table below:

Response:	
RESPONSE \{parameters \}	
parameter	Description

Events generated by commands or actions are described as follows:

Events:	
EVENT	Description

The list format is described as follows (only presented with SET commands):

Events:

COMMAND \{required parameter\} [optional parameter]

Finally, examples shown are described like this:

EXAMPLE COMMAND

RESPONSE TO COMMAND
(comments)

NOTE!

- The parser is not case sensitive!
- ASCII interface 0.0.2 does not accept backspaces, but version 2.0.0 and later do.

5.2 CALL

The CALL command is used to initiate connections to the remote device. Connections are closed by using command CLOSE. Currently open connections can be viewed by using command LIST.

5.2.1 Syntax

Synopsis:

CALL \{address\} \{target\} \{connect_mode\} [MTU \{packet size\}]

Description:	
address	Bluetooth address of the remote device
target	RFCOMM, HFP or HFP-AG target for the connection. The target can be one of the following: channel RFCOMM channel number HFP channel number HFP-AG channel number Format: xx (hex) uuid16 16-bit UUID for searching channel Format: xxxx (hex) uuid32 32-bit UUID for searching channel Format: xxxxxxxx (hex) uuid128 128-bit UUID for searching channel Format: $x x x x x x x x-x x x x-x x x x-x x x x-x x y x x x x x x x x x$ (hex)
connect_ mode	Defines the connection mode to be established. Possible modes are:

| RFP
 Normal RFCOMM connection
 Opens a connection in the Hands Free device mode. |
| :--- | :--- |
| |
| |

Response:

CALL $\{$ link_id $\}$

link_id	Numeric connection identifier

Events:	
CONNECT	Delivered if the CALL command is successful.
NO CARRIER	Delivered if the CALL command fails.
PAIR	If the PAIR event is enabled by using "SET CONTROL CONFI G", it will be displayed during the call if paring has to be done.

5.2.2 Examples

Creating a successful connection to 00:07:80:80:52:27 using channel 1.

```
CALL 00:07:80:80:52:27 1 RFCOMM
CALL 0
CONNECT 0 RFCOMM 1
```

Creating a successful connection to 00:07:80:80:52:27 using Serial Port Profile.
(UUID16 SPP = 1101)

```
CALL 00:07:80:80:52:27 1101 RFCOMM
CALL 0
CONNECT O RFCOMM 1
```

Unsuccessful connection attempt to 00:07:80:80:52:26.

CALL 00:07:80:80:52:26 1 RFCOMM
 CALL 0
 NO CARRIER 0 ERROR 406 RFC_CONNECTION_FAILED

Creating a successful connection to 00:07:80:80:52:27 with MTU 600.

CALL 00:07:80:80:52:27 1101 RFCOMM MTU 600
 CALL 0
 CONNECT 0 RFCOMM 1

NOTE!

If CALL is used with CHANNEL instead of UUID, it will be on average around 300 ms faster, since there is no need to do service discovery. However, the serial port profile (SPP) channel must be known. Notice that the channel for a specific service may vary between different Bluetooth devices.

In iWRAP, the channel for SPP is always 1.

5.3 CLOSE

Command CLOSE is used to terminate a previously opened connection.

5.3.1 Syntax

Synopsis:

CLOSE \{link_id\}

Description:

link_id	Numeric connection identifier from a previously used command CALL or from event $\underline{\text { RING. }}$

Response:
No response

Events:

NO CARRIER This event is delivered after the link is closed.

5.3.2 Examples

Closing an active connection:

```
CALL 00:60:57:a6:56:49 1103 RFC
CALL 0
CONNECT O RFCOMM 1
[+++] (mode switch)
READY.
CLOSE 0
NO CARRIER O ERROR 0
```


5.4 I NQUI RY

Command INQUIRY is used to find other Bluetooth devices in the area (to make a device discovery).

5.4.1 Syntax

Synopsis:

INQUIRY \{timeout [NAME] [LAP \{lap\}]

Description:	
timeout	The maximum amount of time (in units of 1.28 seconds) before the inquiry process is halted.
NAME	Optional flag to automatically request the friendly name for found devices, See command NAME for more information about the remote name request.
LAP	Optional flag for specifying that inquiry access code is used.
lap	Value for inquiry access code. The following values are possible: 0x9e8b33 General/Unlimited Inquiry Access Code (GIAC). This is the default value unless "SET BT LAP" is used. 0x9e8b00 Limited Dedicated Inquiry Access Code (LIAC). 0x9e8b01-0x9e8b32, 0x9e8b34-0x9e8b3f Reserved for future use.

Response:	
I NQUI RY \{num_of_devices \}	
and	
I NQUI RY \{addr\} \{class_of_device \}	
num_of_devices	The number of found devices
addr	Bluetooth address of a found device
class_of_device	Bluetooth Class of Device of a found device

Events:	
INQUIRY_PARTIAL	These events are delivered as devices are found.
$\underline{\text { NAME }}$	These events are delivered after INQUIRY if the NAME flag is present.

NOTE!

It can take up to 10.24 seconds for a Bluetooth device to answer an inquiry scan and, thus, the timeout value should be at least 8 if it is necessary to find every device in the area.
*) iWRAP 2.1.0 and later support RSSI in the inquiry, but this feature must be enabled by using the "SET CONTROL CONFIG" command.

If set "SET BT LAP" is in use there is no need to use [LAP \{lap\}] in the INQUIRY.
INQUIRY PARTIAL events can be masked off by using the "SET CONTROL ECHO" command.

5.4.2 Examples

Basic INQUIRY command:

```
INQUIRY I
INQUIRY_PARTIAL 00:14:a4:8b:76:9e 72010c
INQUIRY_PARTIAL 00:10:c6:62:bb:9b 1e010c
INQUIRY_PARTIAL 00:10:c6:4d:62:5c 72010c
INQUIRY_PARTIAL 00:10:c6:3a:d8:b7 72010c
INQUIRY_PARTIAL 00:02:ee:d1:80:6d 520204
INQUIRY-PARTIAL 00:10:c6:62:bb:fa 1c010c
INQUIRY 6
INQUIRY 00:14:a4:8b:76:9e 72010c
INQUIRY 00:10:c6:62:bb:9b 1e010c
INQUIRY 00:10:c6:4d:62:5c 72010c
INQUIRY 00:10:c6:3a:d8:b7 72010c
INQUIRY 00:02:ee:d1:80:6d 520204
INQUIRY 00:10:c6:62:bb:fa 1c010c
```

An INQUIRY command with NAME resolution:

```
I NQUI RY }1\mathrm{ NAME
INQUIRY_PARTIAL 00: 10: c6: 3a: d8: b7 72010c
INQUIRY PARTIAL 00: 10:c6: 62:bb:9b 1e010c
INQUIRY`
INQUIRY }
INQUIRY 00:10:c6: 3a: d8:b7 72010c
INQUIRY 00:10:c6:62:bb:9b 1e010c
INQUIRY 00: 14:a4:8b: 76: 9e 72010c
NAME 00:10:c6:3a:d8:b7 "TOM"
NAME 00:10: c6: 62: bb:9b "CSLTJANI"
NAME 00:14:a4:8b:76:9e "SWLTMIKKO 3"
```

An INQUIRY command with LAP in use:

```
I NQUI RY 3 LAP 9e8b11
INQUIRY_PARTIAL 00:07:80:80:52:15 111111
INQUIRY_PARTIAL 00:07:80:80:52:27 111111
INQUIRY`}
INQUIRY 00:07:80:80:52:15 111111
INQUIRY 00:07:80:80:52:27111111
```

An INQUIRY command with RSSI enabled:

```
I NQUI RY 1
INQUIRY PARTIAL 00:10:c6:62:bb:9b 1e010c "" -71
INQUIRY`
INQUIRY_PARTIAL 00: 10: c6: 3a: d8:b7 72010c "" -73
INQUIRY 5
INQUIRY 00:10: c6: 62:bb:9b 1e010c
INQUIRY 00:10:c6:4d: 62:5c 72010c
INQUIRY 00:10:c6: 3a:d8:b7 72010c
```


5.5 IC

The IC (inquiry cancel) command can be used to stop an on-going INQUIRY.

5.5.1 Syntax

Synopsis:

IC

Description:

No Description

Response:	
I NQUI RY \{num_of_devices \}	
I NQUIRY \{addr\} \{class_of_device \}	
num_of_devices	The number of found devices
addr	Bluetooth address of a found device
class_of_device	Bluetooth Class of Device of a found device

Events:

None

5.5.2 Examples

Canceling an INQUIRY command:

```
I NQUI RY 5
INQUIRY_PARTIAL 00:14:a4:8b:76:9e 72010c
INQUIRY_PARTIAL 00:10:c6:62:bb:9b 1e010c
IC
INQUIRY 2
INQUIRY 00:14:a4:8b:76:9e 72010c
INQUIRY 00:10:c6:62:bb:9b 1e010c
```


5.6 LIST

Command LI ST shows information about active connections.

5.6.1 Syntax

Synopsis:

LIST

Description:

No Description

Response:	
LIST \{num_of_connections\}	
LIST \{link_id\} CONNECTED RFCOMM \{blocksize\} 00 \{elapsed_time\} \{local_msc\} \{remote_msc\} \{addr\} \{channel\} \{direction\} \{powermode\} \{role\} \{crypt\}*	
link_ id	Numeric connection identifier
Blocksize	RFCOMM data packet size, that is, how many bytes of data can be sent in one packet
elapse_time	Link life time in seconds
local_ msc	Local serial port status bits, "8d" is a normal value
remote_msc	Remote serial port status bits, "8d" is a normal value
Addr	Bluetooth device address of the remote device
channel	RFCOMM channel number at remote device
direction	Direction of the link. The possible values are: OUTGOI NG The link is initiated by a local device (by using command CALL)

powermode	The link is initiated by the remote device Power mode for the link. The possible values are: ACTIVE Link is in active mode
SNI FF	
role	Link is in sniff mode
PARK Link is in hold mode	

Events:

No response

5.6.2 Examples

Listing active connections

```
LIST
LIST 1
LIST O CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
```


5.7 NAME

Command NAME is used to retrieve the friendly name of the device.

5.7.1 Syntax

Synopsis:

NAME \{address\}

Description:

Response:

No response

Events:	
NAME	These events are delivered after INQUIRY if the NAME flag is present.
NAME ERROR	These events are delivered if name resolution fails.

5.7.2 Examples

Successful name resolution
NAME 00:07:80:bf:bf:01
NAME 00:07:80:bf: bf:01 "iWRAP_2.1.0"

Unsuccessful name resolution

[^0]
5.8 RESET

Command RESET is used to reset iWRAP.

5.8.1 Syntax

Synopsis:

RESET

Description:

No description

Response:

No response

5.9 SELECT

Command SELECT is used to switch to data mode.

5.9.1 Syntax

Synopsis:

SELECT \{link_id\}

Response:

No response if a valid link is selected. iWRAP goes to data mode of the link link_id.

5.9.2 Examples

Changing between links

```
LIST
LIST 2
LIST O CONNECTED RFCOMM 668 0 0 243 8d 8d 00:07:80:80:38:77 1 OUTGOING ACTIVE
MASTER ENCRYPTED
LIST 1 CONNECTED RFCOMM 668 0 0 419 8d 8d 00:07:80:80:36:85 1 OUTGOING ACTIVE
MASTER ENCRYPTED
SELECT 1 (iWRAP goes to DATA mode - Device: 00:07:80:80:36:85)
```


5.10 INFO

I NFO displays information about iWRAP version and features.

5.10.1 Syntax

Synopsis:

I NFO

Description:

Response:

Information about iWRAP version and features.

Events:

None.

5.10.2 Examples

```
INFO
WRAP THOR AI (2.1.0 build 20)
Copyright (c) 2003-2006 Bluegiga Technologies Inc.
Compiled on Mar 1 }2006\mathrm{ 13:39:55, running on WT12 module, psr v5
    - BOCK3 version 15 (Mar 1 2006 13:38:28) (max acl/sco 7/1)
    - Bluetooth version 2.0, Power class 2
    - Firmware version 2626
    - up 0 days, 22:34,0 connections (pool 1)
READY
```


5.11 AUTH

AUTH command can be used to reply to AUTH event.

5.11.1 Syntax

Synopsis:

```
AUTH {bd_addr} [pin_code]
```

Description:	
bd_addr	Bluetooth device address of the remote device
pin_code	Bluetooth pin code

Response:

No response
\square

5.11.2 Examples

Pairing with AUTH command

```
AUTH 00:07:80:80:12:34?
AUTH 00:07:80:80:12:34 1234 (Remote device asks for a PIN code)
```

Declining pairing with AUTH command

```
AUTH 00:07:80:80:12:34?
AUTH 00:07:80:80:12:34 (Pairing fails)
```

Pairing with AUTH command and with PAIR event enabled

```
AUTH 00:07:80:80:12:34?
AUTH 00:07:80:80:12:34 1234
PAIR 00:07:80:80:12:34 4000e000540007d007d006100db006b003100
```


NOTE:

If pin code is set with "SET BT AUTH" iWRAP can choose the pin code after AUTH event and it does not need to be same as defined with SET BT AUTH. However if no pin code is set in iWRAP the remote end can choose the pin code and "AUTH \{bd_addr\} [pin_code]" command must use the same.

6. SET

With the SET command, you can display or configure different iWRAP configuration values.

6.1.1 Syntax of SET Commands

Synopsis:

```
SET [{category} {option} {value}]
```


Description:

category	Category of setting PROFILE Enables or disables the Bluetooth profiles iWRAP can support. BT Changes different Bluetooth related settings. See SET BT for more information about options. CONTROL Changes different iWRAP settings. See SET CONTROL for more information about options. link_id This command is used to control the various settings related to Bluetooth links in iWRAP. These are, for example, master, slave and power save modes (SNIFF, PARK, and ACTIVE).
option	Option name, which depends on the category. See the following sections for more information.
value	Value for the option. See the following sections for more information.

Response:

If issued without parameters:

SET \{category\} \{option\} \{value\}	Displays current settings of iWRAP.

None if issued with parameters

Events:

None

6.1.2 Examples

Listing current settings

```
SET
SET BT BDADDR 00:07:80:80:c2:37
SET BT NAME WT12
SET BT CLASS 50020c
SET BT AUTH * 9078
SET BT LAP 9e8b33
SET BT PAGEMODE 4 2000 1
SET BT PAIR 00:07:cf:51:f6:8d 9c4e70d929a83812a00badba7379d7c2
SET BT PAIR 00:14:a4:8b:76:9e 90357318b33817002c5c13b62ac6507f
SET BT PAIR 00:60:57:a6:56:49 3b41ca4f42401ca64ab3ca3303d8ccdc
SET BT ROLE O f 7d00
SET BT SNIFF O 20 1 8
SET CONTROL BAUD 115200,8n1
SET CONTROL CD 80 O
SET CONTROL ECHO }
SET CONTROL ESCAPE 4300 1
SET
```


6.2 SET PROFILE

The SET PROFILE command can be used to enable or disable the available Bluetooth profiles: SPP, OPP, HFP and HFP-AG.

6.2.1 Syntax

Synopsis:

```
SET PROFILE \{profile_name\} [SDP_name]
```

Description:	
profile_ name	Specify the profile to be enabled or disabled. Possible profile acronyms are: HFP Hands Free Profile HFP-AG Hands Free Profile Audio Gateway SPP Serial Port Profile OPP Object Push Profile (server)
SDP_ name	With this parameter, you can set the name for this service. If 'on' is used, the default profile name will be used. If this parameter is not given, the profile will be disabled.

Response:

No response

Note!

iWRAP must be reset after profile configuration for the settings to take place.

If you want to use audio profiles, enable also the support for SCO links, by setting SET CONTROL CONFIG bit 8 to 1 . If no other features of the SET CONTROL CONFIG command are used, the SCO links are enabled by issuing command: 'SET CONTROL CONFIG 100'.

6.2.2 Examples

Example of enabling HFP profile.

```
SET PROFILE HFP My Hands-Free
SET
SET BT BDADDR 00:07:80:80:c2:37
SET BT NAME WT12
SET BT CLASS 001f00
SET BT AUTH * }666
SET BT LAP 9e8b33
SET BT PAGEMODE 4 2000 1
SET BT ROLE 0 f 7d00
SET BT SNIFF 0 20 1 8
SET CONTROL BAUD 115200,8n1
SET CONTROL CD 80 0
SET CONTROL ECHO }
SET CONTROL ESCAPE 4300 1
SET CONTROL MSC DTE 00 00 00 00 00 00
SET PROFILE HFP My Hands-Free
SET PROFILE SPP Bluetooth Serial Port
SET
RESET
```


6.3 SET BT BDADDR

SET BT BDADDR shows the local device's Bluetooth address.

6.3.1 Syntax

Synopsis:

No description, since the value is read only.

Description:

No description

```
Response:
```

None

Events:

None

List format:	
SET BT BDADDR \{bd_addr \}	
bd_addr	Bluetooth device address of the local device

Note:

This value is read-only!

6.4 SET BT NAME

SET BT NAME shows or sets the local device's friendly name.

6.4.1 Syntax

Synopsis:

```
SET BT NAME {friendly_name}
```


Description:

friendly_ name Friendly name of the local device

```
Response:
```

None

Events:

```
SYNTAX ERROR This event occurs if incorrect parameters are given
```


List format:

SET BT NAME \{friendly_name\}

Note:

The maximum length of a friendly name is 16 characters in iWRAP 2.0 .2 and older. In iWRAP 2.1.0 and newer versions, the maximum length is 256 characters.

If friendly_name is left empty, some devices (like PCs or PDAs) may have problems showing the device in the inquiry.

6.5 SET BT CLASS

SET BT CLASS shows or sets the local device's Class-of-Device (CoD).
Class of device is a parameter, which is received during the device discovery procedure, indicating the type of device and which services are supported.

6.5.1 Syntax

Synopsis:

SET BT CLASS \{class_of_device\}

```
Description:
class_of_device CoD of the local device
```

Response:
None
Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:

SET BT CLASS \{class_of_device\}

6.6 SET BT LAP

This command configures the Inquiry Access code (IAC) that iWRAP uses. IAC is used in inquiries and inquiry responses.

6.6.1 Syntax

Synopsis:

SET BT LAP \{iac\}

```
Description:
iac Value for the inquiry access code. The following values are possible:
0x9e8b33
    General/Unlimited Inquiry Access Code (GIAC). This is the
    default value.
0x9e8b00
    Limited Dedicated Inquiry Access Code (LIAC).
0x9e8b01-0x9e8b32 and 0x9e8b34-0x9e8b3f
    Reserved for future use.
```

```
Response:
```

None

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:

SET BT LAP \{iac\}

Note:

IAC is very useful in cases where the module needs to be visible in the inquiry but only for dedicated devices, such as other iWRAP modules, but not for standard devices like PCs or mobile phones. When the value of IAC is the default one (0x9e8b33) it is visible for all devices capable of making an inquiry. On the other hand, when one of the following values $0 x 9 e 8 b 01-0 x 9 e 8 b 32$ and $0 x 9 e 8 b 34-0 x 9 e 8 b 3 f$ is used, only devices sharing the same code will see each other in the inquiry. This will also speed up the inquiry process since only the devices we want to see will respond, and not other random Bluetooth devices.

See also: I NQUIRY

6.7 SET BT AUTH

SET BT AUTH shows or sets the local device's PIN code.

6.7.1 Syntax

Synopsis:

```
SET BT AUTH * {pin_code}
```


Description:

```
pin_code PIN code for authorized connections. Authorization is required if this
    option is present. The PIN code can be from 0 to 16 digits.
```

```
Response:
```

None

Events:

SYNTAX ERROR \quad This event occurs if incorrect parameters are given

List format:

	If PIN code is not in use, SET BT AUTH $*$ is not displayed
SET BT AUTH $*$ \{pin_code $\}$	If PIN code is set

Note:

If command "SET BT AUTH *" is given, PIN code will be disabled and no encryption can be used.

6.8 SET BT PAIR

SET BT PAI R displays or configures the local device's pairing information.

6.8.1 Syntax

Synopsis:

```
SET BT PAIR {bd_addr} {link_key}
```

Description:	Bluetooth address of the paired device
bd_addr	Link key shared between the local and the paired device. If this value is empty, pairing for the given Bluetooth address will be removed. Link key is 32hex values long.
link_key	

Response:

None

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:	
	SET BT PAIR is not displayed if there are no pairings
SET BT PAIR \{bd_addr\} \{link_key \}	One line per pairing is displayed

Note:

iWRAP supports up to 16 simultaneous pairings. If 16 devices have been already paired, no new pairings will be stored.

If command "SET BT PAI \mathbf{R} *" is given, all pairings will be removed.

6.9 SET BT PAGEMODE

SET BT PAGEMODE configures or displays the local device's page mode.
Page mode controls whether iWRAP can be seen in the inquiry and whether it can be connected. This command can also be used to change the page timeout.

6.9.1 Syntax

Synopsis:

SET BT PAGEMODE \{page_mode\} \{page_timeout\} \{page_scan_mode\}

Description:	
page_mode	This parameter defines the Bluetooth page mode. 0 iWRAP is NOT visible in the inquiry and does NOT answers calls 1 iWRAP is visible in the inquiry but does NOT answers calls 2 iWRAP is NOT visible in the inquiry but answers calls 3 iWRAP is visible in the inquiry and answers calls 4 Just like mode 3 if there are NO connections. If there are connections, it is like mode 0 . (default value)
page_timeout	0001 - FFFF Page timeout defines how long the connection establishment can take before an error occurs. Page timeout is denoted as a hexadecimal number (HEX) and calculated as in the example below: 2000 (HEX) is 8192 (DEC). Multiply it by 0.625 and you get the page timeout in milliseconds. In this case, it is 5120 ms (8192 * $0,625 \mathrm{~ms}$).
page_scan_mode	This parameter configures the Bluetooth page scan mode. The possible values are:

| | $\mathbf{0}$Mode R0 means that iWRAP IS connectable all the time, but NOT
 visible in inquiry. |
| :--- | :--- | :--- |
| $\mathbf{2}$Mode R1 means that iWRAP is connectable every 1.28 sec (the
 default value) | |
| Mode R2 means that iWRAP is connectable every 2.56 sec
 (lowest power consumption) | |

Response:
None

Events:

SYNTAX ERROR
This event occurs if incorrect parameters are given

List format:

SET BT PAGEMODE \{page_mode\} \{page_timeout\} \{page_scan_mode\}

Note:

Command "SET BT PAGEMODE" returns default values.

6.10 SET BT ROLE

This command configures or displays the local device's role configuration. With the "SET BT ROLE" command, iWRAP's master-slave behavior can be configured. This command can also be used to set the supervision timeout and link policy.

6.10.1 Syntax

Synopsis:

```
SET BT ROLE {ms_policy} {link_policy} {supervision_timeout}
```

Description:	
ms_policy	This parameter defines how the master-slave policy works. 0 This value allows master-slave switch when calling, but iWRAP does not request it when answering (default value). 1 This value allows master-slave switch when calling, and iWRAP requests it when answering. 2 If this value is set, master-slave switch is not allowed when calling, but it is requested for when answering.
link_policy	This bitmask controls the link policy modes. It is represented in a hexadecimal format. Bit 1 If this bit is set, Role switch is enabled Bit 2 If this bit is set, Hold mode is enabled Bit 3 If this bit is set, Sniff mode is enabled Bit 4 If this bit is set, Park state is enabled F

(This value enables all of the above modes (the default value)	
supervision_timeout	This value disables all of the above modes
$\mathbf{0 0 0 1}$ - FFFF	
Supervision timeout controls how long a Bluetooth link is kept open if the remote end does not answer. Supervision timeout is denoted as a hexadecimal number (HEX) and is calculated as in the example below:	
12C0 (HEX) is 4800 (DEC). Multiply it by 0.625 and you get the supervision timeout in milliseconds. In this case, it is 3000 ms (4800 * 0,625ms). In other words, the remote end can be silent for three seconds until the connection is closed.	

Response:

None

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:

SET BT ROLE \{ms_policy\} \{link_policy\} \{supervision_timeout\}

Note:

Command "SET BT ROLE" returns default values.

6.11 SET BT SNI FF

This command enables automatic sniff mode for Bluetooth connections. Notice that remote devices may not support sniff.

6.11.1 Syntax

Synopsis:

SET BT SNIFF \{max\} \{min\} [\{attempt\} \{timeout\}]

or
SET BT SNI FF \{avg\}

Description:	
max	Maximum acceptable interval in milliseconds Range: 0×0002 to $0 \times F F F E ;$ only even values are valid Mandatory Range: 0x0006 to 0×0540 Time $=\mathrm{N} * 0.625 \mathrm{msec}$ Time Range: 1.25 msec to 40.9 sec
min	Minimum acceptable interval in milliseconds Range: 0×0002 to $0 \times F F F E ;$ only even values are valid Mandatory Range: 0×0006 to 0×0540 Time $=N * 0.625 \mathrm{msec}$ Time Range: 1.25 msec to 40.9 sec
avg	Average value in milliseconds. You can use this as a shortcut for easier sniff setting.
attempt	Number of Baseband receive slots for sniff attempt. Length $=\mathrm{N}^{*} 1.25 \mathrm{msec}$ Range for $\mathrm{N}: ~ 0 \times 0001$ - $0 \times 7 \mathrm{FFF}$ Time Range: $0.625 \mathrm{msec}-40.9$ Seconds Mandatory Range for Controller: 1 to Tsniff/ 2
timeout	Number of Baseband receive slots for sniff timeout.

	Length $=\mathrm{N} * 1.25 \mathrm{msec}$
Range for $\mathrm{N}: 0 \times 0000-0 \times 7 \mathrm{FFF}$	
Time Range: $0 \mathrm{msec}-40.9$ Seconds	
Mandatory Range for Controller: 0 to 0×0028	

Response:

None

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:

SET BT SNIFF \{max\} \{min\} \{attempt\} \{timeout\}

Note:

"SET BT SNI FF" disables automatic sniff mode (default settings).

6.12 SET BT POWER

This command changes the TX power parameters of the WRAP THOR module.

6.12.1 Syntax

Synopsis:

SET BT POWER [RESET] [default] [maximum]

Description:	Returns default values and resets iWRAP
RESET	Default TX power in dBm (user for CALL, I NQUI RY and NAME)
default	Maximum TX power in dBm
maximum	

Response:

None

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:

None

6.12.2 Examples

Change TX power to class 2 setting:

```
SET BT POWER 0 4
```


Note:

Please see the table below for details on setting the requirements for TX power:

Power class:	Max. TX power:	Nominal TX power:	Minimum TX power:
$\mathbf{1}$	$\mathbf{2 0 ~ d B m}$	N/A	0dBm
2	$4 d B m$	$0 d B m$	$-6 \mathbf{d B m}$
3	$0 d b m$	N/A	N/A

Table 3: Power classes as defined in Bluetooth specification
The values passed with "SET BT POWER" will always be rounded to the next available value in the radio power table.

If possible, always use default values!

6.13 SET CONTROL AUTOCALL

SET CONTROL AUTOCALL enables or disables the AUTOCALL functionality in iWRAP.
When the AUTOCALL feature is enabled, iWRAP tries to form a connection with a paired (see "SET BT PAIR") device until the connection is established. If the connection is lost or closed, iWRAP tries to reopen it.

If there are several paired devices in iWRAP memory, an inquiry (transparent to the user) is made and the first paired device found is connected.

6.13.1 Syntax

Synopsis:

SET CONTROL AUTOCALL \{target\} \{timeout\}

Description:	
target	RFCOMM target for automatic connection channel RFCOMM channel number Format xxxx (HEX) uuid16 16-bit UUID for searching the channel Format xxxx (HEX) uuid32 32-bit UUID for searching the channel Format xxxxxxxx (HEX) uuid128 128-bit UUID for searching the channel. Format $x x x x x x x x-x x x x-x x x x-x x x x-x x x x x x x x x x x x$ (HEX)
timeout	Timeout between calls (in milliseconds)

Response:

None

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:	If AUTOCALL is not enabled, "SET CONTROL AUTOCALL" will not be displayed
SET CONTROL AUTOCALL \{target $\boldsymbol{\{ t i m e o u t \}}$	When AUTOCALL is enabled

6.13.2 Examples

To enable AUTOCALL to Serial Port Profile (using UUID) with timeout of 5000 ms :

```
SET CONTROL AUTOCALL 1101 }500
SET
SET BT BDADDR 00:07:80:80:c2:37
SET BT NAME WT12
SET BT CLASS 001f00
SET BT AUTH * 1
SET BT LAP 9e8b33
SET BT PAGEMODE 4 2000 1
SET BT PAIR 00:60:57:a6:56:49 d36c481fb6eb76a139f64c403d821712
SET BT ROLE O f 7d00
SET BT SNIFF O 20 1 8
SET CONTROL AUTOCALL 1101 }500
SET CONTROL BAUD 115200,8n1
SET CONTROL CD OO O
SET CONTROL ECHO }
SET CONTROL ESCAPE 4300 1
SET
```

Disabling AUTOCALL:

```
SET CONTROL AUTOCALL
SET
SET BT BDADDR 00:07:80:80:c2:37
SET BT NAME WT12
SET BT CLASS 001f00
SET BT AUTH * 1
SET BT LAP 9e8b33
SET BT PAGEMODE 4 2000 1
SET BT PAIR 00:60:57:a6:56:49 d36c481fb6eb76a139f64c403d821712
SET BT ROLE 0 f 7d00
```

```
SET BT SNIFF 0 20 1 8
SET CONTROL BAUD 115200,8n1
SET CONTROL CD OO O
SET CONTROL ECHO 7
SET CONTROL ESCAPE 4300 1
SET
```


Note:

Autocall can only be used with RFCOMM connections, not with SCO connections.

6.14 SET CONTROL BAUD

This command changes the local device's UART settings.

6.14.1 Syntax

Synopsis:

SET CONTROL BAUD \{baud_rate\}, 8 \{parity\} \{stop_bits \}

Description:	
baud_rate	UART baud rate in bps. See modules data sheet for suitable values.
parity	UART parity setting n No parity e Even parity 0 Odd parity
stop_bits	Number of stop bits in UART communications 1 One stop bit 2 Two stop bits

Response:

None

List format:

SET CONTROL BAUD \{baud_rate\}, 8 \{parity\} \{stop_bits \}

6.14.2 Examples

Configuring local UART to 9600bps, 8 data bits, no parity and 1 stop bit
SET CONTROL BAUD 9600,8N1

6.15 SET CONTROL CD

This command enables or disables the carrier detect signal (CD) in iWRAP.
Carrier detect signal can be used to indicate that iWRAP has an active Bluetooth connection. With "SET CONTROL CD" command, one PIO line can be configured to act as a CD signal.

6.15.1 Syntax

Synopsis:

SET CONTROL CD \{cd_mask\} \{datamode\}

Description:	This is a bit mask, which defines the GPIO lines used for CD signaling cd_mask For example, value $20(H E X)$ must be used for PIO5. $20(H E X)=100000(B I N)$ For PIO6, the value is 40 $40(H E X)=1000000(B I N)$
datamode	This parameter defines how the carrier detect signal works. $\mathbf{0} \quad$ $\mathbf{1} \quad$ CD signal is driven high if there are one or more connections.

Events:

SYNTAX ERROR
This event occurs if incorrect parameters are given

List format:

SET CONTROL CD \{cd_mask\} \{datamode\}

6.16 SET CONTROL CONFI G

6.16.1 Syntax

This command enables or disables various functional features in iWRAP. These features are described below.

Synopsis:

```
SET CONTROL CONFIG {configuration_value}
```


Description:

```
configuration_ value
```

This value is a bit field (represented as a hexadecimal value), which is used to control various features in iWRAP. These features are described below:

Bit 0

If this bit is set, the RSSI value will be visible in the inquiry results

Bit 1

Not used. Must be set to 0 .

Bit 2

"Interlaced inquiry scan". If this bit is set, interlaced inquiry will be used. As a rule, interlaced inquiry is a little bit faster than regular inquiry.

Bit 3

"Interlaced page scan". If this bit is set, interlaced page (call) will be used. As a rule, interlaced page is a little bit faster than regular page.

Bit 4

"Deep sleep enabled". If this bit is set, 'Deep sleep' power saving mode will be used. Deep sleep is an aggressive power saving mode used when there are no connections.

Bit 5

"Bluetooth address in CONNECT". If this bit is set, the Bluetooth address of the remote end will be displayed on the CONNECT event.

Bit 6

Not used. Must be set to 0 .

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given

List format:

None

6.16.2 Examples

RSSI, deep sleep, interlaced inquiry, and page scans enabled.

6.17 SET CONTROL ECHO

This command changes the echo mode of iWRAP.

6.17.1 Syntax

Synopsis:

SET CONTROL ECHO \{echo_mask\}

| Description: | |
| :--- | :--- | :--- |
| echo_mask | Bit mask for controlling the display of echo and events
 Bit $\mathbf{0}$
 If this bit is set, the start-up banner is visible.
 If this bit is set, characters are echoed back to client in command
 mode. |
| Bit 2 | This bit indicates if set events are displayed in command mode. |

Events:

SYNTAX ERROR
This event occurs if incorrect parameters are given

List format:

SET CONTROL ECHO \{echo_mask\}

Warning!

If every bit is set off (value 0), it is quite impossible to know the iWRAP status.
If Bit 2 is set off, it is very hard to detect whether iWRAP is in command mode or in data mode. This can, however, be solved if one IO is used to indicate that iWRAP is in data mode ("SET CONTROL CD").

6.18 SET CONTROL ESCAPE

6.18.1 Syntax

This command is used to change the escape character used to switch between command and data mode. This command also enables and disables DTR signaling.

Synopsis:

SET CONTROL ESCAPE \{esc_char\} \{dtr_mask\} \{dtr_mode\}

Description:	esc_char dtr_mask Decimal ASCII character to define the escape character used in the escape sequence. Use "-" to disable escape sequence (the default value is 43, which is " + ").
dtr_mode	Bit mask for selecting I/O pins used for DTR. For example for IO5, the bit mask is 00100000 and dtr_mask is $\mathbf{2 0}$ (HEX).
$\mathbf{0} \quad$DTR Disabled Return to command mode when DTR is dropped.	
$\mathbf{2} \quad$Close the active connection when DTR is dropped.	

Events:

SYNTAX ERROR

List format:

SET CONTROL ESCAPE \{esc_char\} \{dtr_mask\} \{dtr_mode\}

6.18.2 Examples

How to disable default escape character "+" and configure DTR to PIO5.

SET CONTROL ESCAPE - 201

6.19 SET CONTROL INIT

SET CONTROL INIT lists or changes the initialization command in iWRAP. This command is run when iWRAP is started or reset.

6.19.1 Syntax

Synopsis:

SET CONTROL INIT \{command\}

Description:

command	Any of the available iWRAP commands. This command is automatically executed every time iWRAP starts (after power-on, RESET or watchdog event)

Events:

None

List format:

SET CONTROL INIT \{command\}

6.19.2 Examples

To remove all pairings after reset:

SET CONTROL I NIT SET BT PAI R *

To change baud rate to 115200 bps after reset:

```
SET CONTROL INIT SET CONTROL BAUD 115200,8n1
```


6.20 SET CONTROL MUX

SET CONTROL MUX can be used to enable or disable the multiplexing mode. This chapter describes the usage of the command as well as the operation of multiplexing mode.

6.20.1 Syntax

Synopsis:

SET CONTROL MUX \{mode\}

Description:	Multiplexing mode
mode	OMultiplexing mode disabled. Normal (data-command) mode enabled
$\mathbf{1} \quad$Multiplexing mode enabled. Multiplexing protocol must be used to talk to iWRAP.	

Events:

READY READY event occurs after a successful mode change.

List format:	Nothing is displayed when multiplexing mode is disabled.
SET CONTROL MUX $\mathbf{1}$	This string is displayed when multiplexing mode is enabled.

6.20.2 Examples

To enable multiplexing mode:

[^1]
Note:

When multiplexing mode is enabled, no ASCII commands can be given to iWRAP but the multiplexing protocol must be used. Multiplexing mode can be disabled by deleting PSKEY_USR3 with PSTool.

ASCII commands should not end with" $\backslash \mathrm{r} \backslash \mathrm{n}$ " when multiplexing mode is in use.

6.20.3 Using Multiplexing Mode

The multiplexing protocol format is presented below:

Length:	Name:	Description:	Value:
8 bits	SOF	Start of frame	$0 \times B F$
8 bits	LINK	Link ID	$0 \times 00-0 \times 08$ or $0 \times F F$ (control)
6 bits	FLAGS	Frame flags	0×00
10 bits	LENGTH	Size of data field in bytes	-
$0-800$ bits	DATA	Data (max size 100 bytes!)	-
8 bits	nLINK	\{LINK\} XOR OxFF	-

Table 4: Multiplexing frame format
When multiplexing mode is enabled, all the commands and data sent from host to iWRAP must be sent by using the frame format described above instead of plain ASCII commands. Also, the responses and data coming from iWRAP to the host are sent using the same format. iWRAP firmware autonomously processes the frames and decides whether they contain control commands or data which should be forwarded to its destination.

The advantage of multiplexing mode is that there is no need to do special command-data - command mode switching since data and commands are transmitted in the same mode. This saves a lot of time especially in multipoint scenarios, where - in the worst case switching from data mode to command mode can take more than two seconds.

Also in scenarios where there are several connections, receiving data simultaneously from several devices is difficult if multiplexing mode is not used. In normal (data/command) mode, only one connection can be active (in data mode) at a time, and it can only be used to transmit or receive data. If there is any data received from the other connection during normal mode, the data is stored to small iWRAP buffers and received when the connections become active (data mode of the connection enabled).

The next figure illustrates the host-iWRAP-host communications in multiplexing mode.

Figure 4: Host-iWRAP-Host communication
The figure below illustrates host-iWRAP-remote device communication when multiplexing mode is in use. The key thing is that the remote device does not need to know anything about the multiplexing communication and frame format, but it sees the connection as a standard Bluetooth connection.

Figure 5: Host-iWRAP-remote device communications
At the moment, four (4) simultaneous connections can be used in multiplexing mode.
On the next page, there is a simple C-code example on how to create a simple multiplexing frame containing an iWRAP command.

```
/ / HOW TO CREATE A SI MPLE FRAME
char outbuf[ 128]; / / Buffer for frame
char* cmd = "SET"; / / ASCII command
int link = 0xff, pos=0; / / 0xFF for control channel
int len = strlen(cmd); / / Calc. length of ASCI| command
/ / Generate packet
outbuf[pos++]=0xbf; / / SOF
outbuf[pos++]=link; / / Link ( 0xFF=Control, 0x00 = connection 1, etc.)
outbuf[pos++]=len>>8; / / Flags
outbuf[pos++]=len & 0xff; / / Length
pos += len;
/ / I nsert data into correct position in the frame
memmove(outbuf+pos cmd, len);
pos += len; / / Move to correct position
outbuf[pos]=link^0xff; / / nlink
```


6.21 SET CONTROL BIND

With SET CONTROL BIND, it is possible to bind PIO 2 - PIO pins to read the activity on PIO line and respond with according settings.

6.21.1 Syntax

Synopsis:

SET CONTROL BIND \{pri\} [io_mask] [direction] [command]

Description:	
pri	Command priority. Determines the order in which the commands bound to PIO are executed. Value range: 0 to 7 .
io_mask	Determines which PIO is to be bind. This is a hexadecimal value. Example: Set PIO5. 100000bin ($5^{\text {th }}$ bit is one) $=20 \mathrm{hex}$
direction	Determines whether PIO is triggered on rising, falling, or on both edges of the signal. Possible values: RISE Command is executed on rising edge. FALL Command is executed on falling edge. CHANGE Command is executed on rising and falling edge.
command	Standard iWRAP command or string to be sent to the active Bluetooth link.

Response:

No response

6.21.2 Examples

Example usage of binding PIOs:

```
SET CONTROL BIND 0 20 FALL CLOSE O
SET CONTROL BIND 1 }20\mathrm{ FALL SET BT PAIR *
SET
SET BT BDADDR 00:07:80:81:62:2a
SET BT NAME EKWT11 PR
SET BT CLASS 001f00
SET BT AUTH * }123
SET BT LAP 9e8b33
SET BT PAGEMODE 4 2000 1
SET BT ROLE O f 7d00
SET BT SNIFF O 2018
SET CONTROL BAUD 115200,8n1
SET CONTROL BIND 0 20 F close 0
SET CONTROL BIND 120 F set bt pair *
SET CONTROL CD 80 0
SET CONTROL ECHO }
SET CONTROL ESCAPE - 20 1
SET CONTROL MSC DTE 00 00 00 00 00 00
SET PROFILE HFP WT12 Hands Free
SET PROFILE SPP Bluetooth Serial Port
SET
Example of binding PIO5 to close the connection and delete all pairings after PIO5 has fallen. The SET command indicates that the binding of commands was succesfull.
```


6.22 SET CONTROL MSC

With iWRAP firmware, it is possible to transmit all the UART modem signals over the SPP (Serial Port Profile) Bluetooth link. The signals' DSR, DTR, RTS, CTS, RI and DCD can be specified to PIO2-PIO7 on the WT12/WT11 and 2022-1 modules. The SET CONTROL MSC command is used to do this.

6.22.1 Syntax

Synopsis:

SET CONTROL MSC [[mode] [[DSR] [[DTR] [[RTS] [[CTS] [[RI] [DCD]]]]]]]

Description:	Mode of the device iWRAP connects to. The mode can be: DTE or DCE
NOTE:	
DTE means that remote Bluetooth device is DTE (so iWRAP is DCE and	
device connected to iWRAP is DTE).	

to select the PIO.\end{array}\right|\)| Data Terminal Ready. See the note below on how to select the PIO. |
| :--- | :--- |

NOTE:

The PIO pin is selected with a bit mask. For example, if you want to use PIO3, you will then have a bit mask where the third bit is 1 , that is, 1000 . This bit mask value is then given in the command in hexadecimal format. 1000 (bin) $=8$ (hex).

Events:

SYNTAX ERROR This event occurs if incorrect parameters are given.

6.22.2 Examples

Setting UART signals to iWRAP. IWRAP is set to DCE mode, DSR signal is set to PIO2, DTR to PIO 3 and DCD to PIO 4 .

SET CONTROL MSC DCE 4800010

Giving the MSC command without parameters outputs the synopsis.

```
SET CONTROL MSC
SET CONTROL MSC [[mode] [[DSR] [[DTR] [[RTS] [[CTS] [[RI] [DCD]]]]]]]
```

Disabling MSC:
SET CONTROL MSC
SET CONTROL MSC DTE 000000

7. SET \{LINK_ID\}

The following chapters describe all commands related to 'SET \{link_id\}'. In general, you can use these commands to modify different parameters related to active Bluetooth connections, such as power saving, master-slave modes etc.

7.1 SET \{link_id\} ACTIVE

This command disables all the power save modes for the defined, active Bluetooth link and sets it into active mode.

7.1.1 Syntax

Synopsis:

SET \{link_id\} ACTIVE

Events:

None

7.1.2 Examples

Changing from SNIFF to active:

```
LIST
LIST 1
LIST 0 CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING SNIFF
MASTER PLAIN
SET O ACTI VE
LIST
LIST O CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
```


7.2 SET \{link_id\} MASTER

This command attempts to switch the link to Piconet master. Notice that this may not be allowed by the remote end.

7.2.1 Syntax

Synopsis:

SET \{link_id\} MASTER

Events:

None

7.2.2 Examples

Changing from slave to master:

```
LIST
LIST 1
LIST O CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
SLAVE PLAIN
SET O MASTER
LIST
LIST O CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
```


7.3 SET \{link_id\} SLAVE

This command attempts to switch the link to Piconet slave. Notice that this may not be allowed by the remote end.

7.3.1 Syntax

Synopsis:

SET \{link_id $\}$ SLAVE

Events:

None

7.4 SET \{link_id\} PARK

This command attempts to enable PARK mode for the defined Bluetooth link. Whether this command is successful or not, depends on if the remote end allows park state to be used.

7.4.1 Syntax

Synopsis:

```
SET {link_id} PARK {max} {min}
```

or
SET \{link_id\} PARK \{avg\}

Description:	
link_id	Numeric connection identifier
$\boldsymbol{\operatorname { m a x }}$	Maximum acceptable interval
$\boldsymbol{\operatorname { m i n }}$	Minimum acceptable interval
$\mathbf{a v g}$	Shortcut for easier PARK setting

Events:

None

7.4.2 Examples

Changing from active to PARK:

```
LIST
LIST 1
LIST 0 CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
SET O PARK }100
LIST
LIST 0 CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING PARK
MASTER PLAIN
```


Note:

Refer to the Bluetooth specification for more information about PARK state and its usage.

7.5 SET \{link_id\} SNI FF

This command attempts to enable SNIFF mode for the defined Bluetooth link. Whether this command is successful or not, depends on if the remote end allows sniff to be used.

7.5.1 Syntax

Synopsis:

SET \{link_id\} SNIFF \{max\} \{min\} [\{attempt\} \{timeout\}]

or
SET \{link_id\} SNIFF \{avg\}

Description:	
link_id	Numeric connection identifier
$\boldsymbol{m a x}$	Maximum acceptable interval in milliseconds
$\boldsymbol{\operatorname { m i n }}$	Minimum acceptable interval in milliseconds
avg	Average value is milliseconds. Shortcut for easier SNIFF setting.
attempt	SNIFF timeout (default value 8)
timeout	

Events:

None

Note:

Refer to the Bluetooth specification for more information.

7.6 SET \{link\} MSC

With this command, it is possible to send 07.10 Modem Status Command to the remote device without having the signals actually connected to the module.

7.6.1 Syntax

Synopsis:

```
SET {link_id} MSC {status}
```

Description:	link_id Numeric connection identifier of the link where the modem status is to be sent.
status	Status of the signals according to 07.10 standard.

Response:

No response

7.6.2 Examples

Example usage of sending MSC:

```
SET O MSC 8D
Normal MSC status was sent.
```


7.7 TESTMODE

Command TESTMODE enables Bluetooth Test Mode in which Bluetooth Testers may be used to test the radio environment.

7.7.1 Syntax

Synopsis:

TESTMODE

Description:

None

Response:

TEST 0

Events:

None

7.8 BER \{link_id\}

The BER command returns the Bit Error Rate of the link given as a parameter.

7.8.1 Syntax

Synopsis:

BER \{link_id\}

Response:	
BER \{bd_addr\} \{ber\}	
bd_addr	Bluetooth address of the remote device
ber	Average Bit Error Rate on the link. Possible values are from 0.0000 to 100.0000.

Events:

None

7.8.2 Examples

Checking the Bit Error Rate of an active connection

```
LIST
LIST 1
LIST O CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
BER O
BER 00:60:57:a6:56:49 0.0103
```


Note:

Works only for BDR links.

7.9 RSSI \{link_id\}

The RSSI command returns the Receiver Signal Strength Indication of the link given as a parameter.

7.9.1 Syntax

Synopsis:
RSSI \{link_id\}

Response:

RSSI \{bd_addr\} \{rssi\}

bd_addr	Bluetooth address of the remote device
rssi	Receiver Signal Strength Indication. Possible values are from +20 to -128. $20=$ Good link $-128=$ Poor link

Events:

None

7.9.2 Examples

Checking the Bit Error Rate of an active connection:

```
LIST
LIST 1
LIST 0 CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
RSSI 0
RSSI 00:60:57:a6:56:49-10
```


7.10 TXPOWER

The TXPOWER command can be used check the TX output power level of an active Bluetooth link.

7.10.1 Syntax

Synopsis:

```
TXPOWER {link_id}
```


Response:	
TXPOWER \{bd_addr\} $\{$ \{txpower \}	
bd_addr	Bluetooth address of the remote device
Txpower	User TX power level in dBm

Events:

None

7.10.2 Examples

Checking the TX power level of an active connection:

```
LIST
LIST 1
LIST O CONNECTED RFCOMM 320 0 0 3 8d 8d 00:60:57:a6:56:49 1 OUTGOING ACTIVE
MASTER PLAIN
TXPOWER O
TXPOWER 00:60:57:a6:56:49 3
```


7.11 SDP

The SDP command can be used to browse the available services on other Bluetooth devices.

7.11.1 Syntax

Synopsis:

SDP \{bd_addr\} \{uuid\}

Description:	Bluetooth address of the remote device
bd_addr	Service to look for UUID "1002" stands for root and returns all the services the remote device supports.
Uuid	

Response:

SDP \{bd_addr\} < I SERVI CENAME S "service_name" > < I PROTOCOLDESCRI PTORLI ST \ll U L2CAP $><$ U RFCOMM I channel \ggg SDP	
bd_addr	Bluetooth address of the remote device
service name	Name of the service. For example "Serial Port Profile"
channel	RFCOMM channel for the service

Events:

None

7.11.2 Examples

How to look for the SPP service:

```
SDP 00:07:80:80:52:15 1101
SDP 00:07:80:80:52:15 < I SERVICENAME S "Bluetooth Serial Port" > < I PROTOCOLDE
```

```
SCRIPTORLIST < < U L2CAP > < U RFCOMM I O1 > > >
```

SDP

7.12 SDP ADD

The SDP ADD command can be used to modify a local service record to add new services.

7.12.1 Syntax

Synopsis:

```
SDP ADD {uuid} {name}
```

Description:	
uuid	Identifier of the service
name	Name of the service

Response:	
SDP $\{$ channel $\}$	
channel	RFCOMM channel where the service is bound to

Events:

None

7.12.2 Examples

Adding a Dial-Up Networking profile

```
SDP ADD 1103 Dial-Up Networking
SDP }
```


Note:

The service record will be cleared when a reset is made, so SDP ADD command(s) must be given every time after a reset, unlike SET commands, which are stored on flash memory.
"SET CONTROL INIT" can be used to automatically issue one "SDP ADD" command.

7.13 SLEEP

The SLEEP command will force deep sleep on. After issuing this command, the module will enter deep sleep until a Bluetooth connection is received or something is received from the UART interface in command mode. The SLEEP command will also work when there are one or more active connections and iWRAP is in command mode.

Deep sleep is an aggressive power saving mode for WRAP THOR modules.

7.13.1 Syntax

Synopsis:

SLEEP

Description:

None.

Response:

None

Events:

None

Note:

Refer to power consumption documents for more information about power consumption in deep sleep mode.

7.14 SCO ENABLE

The SCO ENABLE command is needed before any SCO (audio) connections can be used

7.14.1 Syntax

Synopsis:

SCO ENABLE

```
Description:
```

None

```
Response:
```

None

```
Events:
```

None

Note:

The SCO ENABLE command must be given every time after reset; it is not stored on flash memory.
"SET CONTROL INIT" can be used to automatically issue one "SCO ENABLE" command.

7.15 SCO OPEN

The SCO OPEN command is used to open the actual SCO connection. An existing RFCOMM connection is needed before SCO OPEN can be issued.

7.15.1 Syntax

Synopsis:

```
SCO OPEN {link_id}
```



```
Response:
```

None

Response:
None

Events:

CONNECT	If SCO connection was opened successfully
NO_CARRIER	If connection opening failed

Note:

The SCO ENABLE command must be given before the SCO OPEN command can be used.

7.15.2 Examples

Creating an SCO connection to another iWRAP device:

```
SCO ENABLE
CALL 00:07:80:80:52:27 1 RFCOMM
CALL O
CONNECT O RFCOMM 1
[+++]
SCO OPEN O
CONNECT 1 SCO
```


7.16 BOOT

The BOOT command is used to change the module settings. After issuing this command, the module will enter the selected mode. The modes are explained in chapter 8.3. After resetting the module, it will boot in iWRAP mode again.

7.16.1 Syntax

Synopsis:

BOOT [boot_mode]

Description:	
boot_mode	```0 0 0 0 iWRAP 0 0 0 1 HCI, BCSP, 115800,8n1 0 0 0 3 HCI, USB 0004 HCl, H4, 115200,8n1```

Response:

No response

7.16.2 Examples

```
BOOT }
    Ò `WWUo`À
        O` `WWUo`À
                O` `WWUo`À
                O` `WWUo`À
                            O ` WWUo
À
Example of changing the module to HCI BCSP 115200 with the BOOT command.
After resetting the module, iWRAP becomes active.
```


7.17 ECHO

The ECHO command sends a specified string of characters to the active link specified by the 'link_id' parameter. This command can be used, for example, with command SET CONTROL BIND to send an indication of activity over a Bluetooth link.

7.17.1 Syntax

Synopsis:

ECHO \{link_id [string]

Description:	
link_id	Numeric connection identifier
string	User-determined string of characters If "\% \mathbf{p} " is used as a value, iWRAP echos the status of local GPIO pins

Response:

No response

Events:

None

7.17.2 Examples

```
ECHO O WT12_DATA_1
On the other device UART receive:
WT12_DATA_1
```


7.18 PI NG \{link_id\}

The PI NG command sends a Bluetooth test packet to the other device, which sends the packet back and the round trip time of the packet is shown.

7.18.1 Syntax

Synopsis:

PING \{link_id\}

Response:	
RSSI \{bd_addr\} $\{$ \{round trip time \}	
bd_addr	Bluetooth address of the remote device
Round trip time	Round trip time of the packet

Events:

None

7.18.2 Examples

Checking the round trip time:
PING 0
PING 00:07:80:80:c3:4a 42
Round trip time is $\mathbf{4 2} \mathbf{m s}$ in this case.

7.19 TEST

The TEST command is used to give radio test commands to iWRAP. The commands are the same that can be given by using CSR BlueTest software (downloadable from www.bluegiga.com/techforum). See the Performance Measurement Guide for instructions on using radio tests.

7.19.1 Syntax

Synopsis:

TEST \{mode\} [mode_specific_ parameters]

Description:	
 mode_specific_parameters	RF Test mode Supported test modes are: PAUSE Pause halts the current test and stops any radio activity. TXSTART \{lo_freq\} \{level\} \{mod_freq\} Enables the transmitter in continuous transmission at a designated frequency (lo_freq) with a designated output power (level) and designated tone modulation frequency (mod_freq). lo_freq range: 2402-2480(MHz) level range: 0-63 mod_freq range: 0 - 32767 (recommended values 0 or 256) TXDATA1 \{lo_freq\} \{level\} Enables the transmitter with a designated frequency (lo_freq) and output power (level). Payload is PRBS9 data. In this mode, the receiver is not operating. TXDATA2 \{cc\} \{level\} Enables the transmitter with a simplified hop sequence designated by country code \{cc\} and output power \{level\}. Payload is PRBS9 data. In this mode, the receiver is not operating. Related test spec name: TRM/CA/01/C (output

	Plays a constant tone on the PCM port. freq range: 0-5 ampl range: 0-8 dc: 0-60096 (set to 0) SETPIO \{mask\} \{bits\} Sets PIO high or low according to given parameters. NOTE: This command sets the PIO regardless of other usage! mask: Bit mask specifying the PIOs that are to be set bits: the bit values If you use hexadecimals, put $0 x$ in front of the value, otherwise they are interpreted as decimals. GETPI O Gets the status of all the PIO lines.

Response:

OK for successful execution
ERROR for unsuccessful execution

7.19.2 Examples

TEST TXSTART 2441630

OK
Example on how to set the module to transmit continuous carrier signal at $\mathbf{2 4 4 1} \mathbf{M H z}$ and at full output power.

TEST PCMTONE 150
OK
Example on how to set the modules PCM output a constant signal for PCM testing.

8. I WRAP EVENTS

Events are a mechanism that iWRAP uses to notify the user for completed commands, incoming connections, and so on.

If iWRAP is in data mode (data is being transmitted and no multiplexing mode is used) the only possible event is NO CARRIER indicating that connection was closed or lost.

Note:

- iWRAP is designed so that unwanted events can be safely ignored. Events CONNECT, NO CARRIER and RING change the mode of operation and therefore they cannot be ignored.
- Events can be masked away by removing Bit 2 from command SET CONTROL ECHO.

8.1 CONNECT

The CONNECT event is used to notify the user for a successful link establishment.

8.1.1 Syntax

Synopsis:
CONNECT \{link_id\} \{SCO | RFCOMM \{channel\} [address]\}

Description:	Numeric connection identifier
link_id	Connected RFCOMM channel number
channel	Address of the remote end. This is displayed only if bit 5 is set in "SET CONTROL CONFI G".
address	

Note:

iWRAP automatically enters data mode after the CONNECT event if multiplexing mode is disabled.

8.2 INQUIRY PARTIAL

The INQUIRY PARTIAL event is used to notify the user for a found Bluetooth device. This event precedes response for the I NQUIRY command.

8.2.1 Syntax

Synopsis:

I NQUI RY_PARTI AL \{address\} \{class_of_device\} [\{cahced_name\} \{rssi\}]

Description:	Bluetooth address of the found device
address	C Bluetooth Class of Device of the found device
class_of_device	User friendly name of the found device if already known
cached_name	Received Signal Strength of the found device
rssi*	

${ }^{*}$) RSSI is a value between -128 and 0 . The lower the value, the lower the signal strength.

Note:

- cached_name and rssi are only visible if "Inquiry with RSSI" is enabled with "SET CONTRŌ CONFIG".

8.3 NO CARRIER

The NO CARRIER event is used to notify the user for a link loss or, alternatively, a failure in the link establishment.

8.3.1 Syntax

Synopsis:
NO CARRIER \{link_id\} ERROR \{error_code\} [message]

Description:	
link_id	Numeric connection identifier
error_code	Code describing the error
message	Optional verbose error message

8.4 READY

The READY event is used to notify the user for switching to command mode or to indicate that iWRAP is ready to be used after a reset or after a successful switch between normal or multiplexing mode has been done.

8.4.1 Syntax

Synopsis:

READY.

Description:

None

8.5 NAME

The NAME event is used to notify the user for a successful lookup for Bluetooth friendly name of the remote device.

8.5.1 Syntax

Synopsis:

NAME \{address\} \{"friendly_ name"\}

Description:	
address	Bluetooth device address of the device
friendly_name	Friendly name of the device

8.6 NAME ERROR

The NAME ERROR event is used to notify the user for a Bluetooth friendly name lookup failure.

8.6.1 Syntax

Synopsis:

```
NAME ERROR {error_code} {address} [message]
```

Description:

error_code	Code describing the error
address	Bluetooth address of the device
message	Optional verbose error message

8.7 PAI R

The PAIR event is used to notify the user for a successful pairing.

8.7.1 Syntax

Synopsis:

```
PAIR {address} {key_type} {link_key}
```

Description:	
address	Bluetooth device address of the paired device
key_type	Type of link key 0 Combination key 1 Local unit key 2 Remote unit key ff Unknown key
link_ key	Link key shared between the local and the paired device

Note:

The PAIR event is enabled or disabled with the "SET CONTROL CONFIG" command.
If the PAIR event is enabled and pairing is done, the event will also be shown during the CALL procedure and also before the RING event.

8.8 RING

The RING event is used to notify the user for an incoming connection. Incoming connections are only accepted if there is no existing links.

8.8.1 Syntax

Synopsis:
RING \{link_id\} \{address\} \{SCO | \{channel\} RFCOMM\}

Description:	
link_id	Numeric connection identifier
address	Bluetooth device address of the device
channel	Local RFCOMM or SCO channel

8.9 SYNTAX ERROR

SYNTAX ERROR is not an actual event, but an error message describing a faulty typed command or an error in command parameters.

8.9.1 Syntax

Synopsis:
SYNTAX ERROR

8.10 AUTH

AUTH event indicates that someone is trying to pair with iWRAP.

8.10.1 Syntax

Synopsis:

```
AUTH {bd_ addr}?
```


Description:

bd_addr	Bluetooth device address of the remote device

The AUTH event occurs only if interactive pairing is enabled with "SET CONTROL CONFIG" command.

9. IWRAP ERROR MESSAGES

This chapter briefly presents the iWRAP error messages.

9.1 HCI Errors

$\mathbf{H C l}$ errors start with code: $\underline{\mathbf{0 x 1 0 0}}$

ERROR MESSAGE	CODE	Explanation
HCI_SUCCESS	0×00	Success
HCl _ERROR_ILLEGAL_COMMAND	0×01	Unknown HCl command
HCl _ERROR_NO_CONNECTION	0×02	Unknown connection identifier
HCl _ERROR_HARDWARE_FAIL	0×03	Hardware Failure
HCl _ERROR_PAGE_TIMEOUT	0×04	Page timeout
HCI_ERROR_AUTH_FAIL	0×05	Authentication failure
HCI_ERROR_KEY_MISSING	0×06	PIN or key missing
HCI_ERROR_MEMORY_FULL	0×07	Memory capacity exceeded
HCI_ERROR_CONN_TIMEOUT	0×08	Connection timeout
HCl_{-}ERROR_MAX_NR_OF_CONNS	0×09	Connection Limit Exceeded
HCl _ERROR_MAX_NR_OF_SCO	$0 \times 0 \mathrm{a}$	Synchronous connection limit to a device exceeded
HCl _ERROR_MAX_NR_OF_ACL	0x0b	ACL Connection Already Exists
HCI_ERROR_COMMAND_DISALLOWED	$0 \times 0 \mathrm{c}$	Command Disallowed
HCl _ERROR_REJ_BY_REMOTE_NO_RES	0x0d	Connection Rejected due to Limited Resources
$\mathrm{HCl}_{\text {_ }} \mathrm{ERROR}$ _REJ_BY_REMOTE_SEC	$0 \times 0 \mathrm{e}$	Connection Rejected Due To Security Reasons
HCl _ ERROR _REJ_BY_REMOTE_PERS	0x0f	Connection Rejected due to Unacceptable BD ADDR
HCl _ ERROR _ HOST _TIMEOUT	0×10	Connection Accept Timeout Exceeded

HCI_ERROR_UNSUPPORTED_FEATURE	0×11	Unsupported Feature or Parameter Value
HCI_ERROR_ILLEGAL_FORMAT	0×12	Invalid HCI Command Parameter
HCI_ERROR_OETC_USER	0×13	Remote User Terminated Connection
HCI_ERROR_OETC_LOW_RESOURCE	0×14	Remote Device Terminated Connection due to Low Resources
HCI_ERROR_OETC_POWERING_OFF	0×15	Remote Device Terminated Connection due to Power Off
HCI_ERROR_CONN_TERM_LOCAL_HOST	0×16	Connection Terminated By Local Host
HCI_ERROR_AUTH_REPEATED	0×17	Repeated Attempts
HCI_ERROR_PAIRING_NOT_ALLOWED	0x18	Pairing Not Allowed
HCI_ERROR_UNKNOWN_LMP_PDU	0x19	Unknown LMP PDU
HCI_ERROR_UNSUPPORTED_REM_FEATURE	$0 \times 1 \mathrm{a}$	Unsupported Remote Feature / Unsupported LMP Feature
HCI_ERROR_SCO_OFFSET_REJECTED	0x1b	SCO Offset Rejected
HCl_ERROR_SCO_INTERVAL_REJECTED	0x1c	SCO Interval Rejected
HCI_ERROR_SCO_AIR_MODE_REJECTED	0x1d	SCO Air Mode Rejected
HCI_ERROR_INVALID_LMP_PARAMETERS	$0 \times 1 \mathrm{e}$	Invalid LMP Parameters
HCI_ERROR_UNSPECIFIED	0x1f	Unspecified Error
HCl_ERROR_UNSUPP_LMP_PARAM	0×20	Unsupported LMP Parameter Value
HCI_ERROR_ROLE_CHANGE_NOT_ALLOWED	0×21	Role Change Not Allowed
HCI_ERROR_LMP_RESPONSE_TIMEOUT	0×22	LMP Response Timeout
HCI_ERROR_LMP_TRANSACTION_COLLISION	0×23	LMP Error Transaction Collision

HCl _ERROR_LMP_PDU_NOT_ALLOWED	0×24	LMP PDU Not Allowed			
HCl _ERROR_ENC_MODE_NOT_ACCEPTABLE	0×25	Encryption Mode Not Acceptable			
HCI_ERROR_UNIT_KEY_USED	0×26	Link Key Can Not be Changed			
HCI_ERROR_QOS_NOT_SUPPORTED	0×27	Requested QoS Not Supported			
HCl _ERROR_INSTANT_PASSED	0×28	Instant Passed			
HCl _ERROR_PAIR_UNIT_KEY_NO_SUPPORT	0×29	Pairing With Supported	Unit		Not

Table 5: HCl errors
Please see Bluetooth $2.0+E D R$ core specification page 493 for more information about error codes.

0×300

ERROR MESSAGE	CODE
SDC_OK	0×00
SDC_OPEN_SEARCH_BUSY	0×01
SDC_OPEN_SEARCH_FAILED	0×02
SDC_OPEN_SEARCH_OPEN	0×03
SDC_OPEN_DISCONNECTED	0×04
SDC_OPEN_SEARCH_FAILED_PAGE_TIMEOUT	0×05
SDC_OPEN_SEARCH_FAILED_REJ_PS	0×06
SDC_OPEN_SEARCH_FAILED_REJ_SECURITY	0×07
SDC_OPEN_SEARCH_FAILED_REJ_RESOURCES	0×08
SDC_OPEN_SEARCH_FAILED_SIGNAL_TIMEOUT	0×09
SDC_ERROR_RESPONSE_PDU	0×10
SDC_NO_RESPONSE_DATA	0×11
SDC_CON_DISCONNECTED	0×12
SDC_CONNECTION_ERROR	0×13
SDC_CONFIGURE_ERROR	0×14
SDC_SEARCH_DATA_ERROR	0×19
SDC_DATA_CFM_ERROR	0×19
SDC_SEARCH_BUSY	0×16
SDC_RESPONSE_PDU_HEADER_ERROR	
SDCONSE_PDU_SIZE_ERROR	

SDC_RESPONSE_TIMEOUT_ERROR	$0 \times 1 \mathrm{a}$
SDC_SEARCH_SIZE_TOO_BIG	$0 \times 1 \mathrm{~b}$
SDC_RESPONSE_OUT_OF_MEMORY	$0 \times 1 \mathrm{c}$
SDC_RESPONSE_TERMINATED	$0 \times 1 \mathrm{~d}$

Table 6: SDP errors

9.2 RFCOMM Errors

RFCOMM errors start with code: 0x400

ERROR MESSAGE	CODE
RFC_OK	0×00
RFC_CONNECTION_PENDING	0×01
RFC_CONNECTION_REJ_PSM	0x02
RFC_CONNECTION_REJ_SECURITY	0×03
RFC_CONNECTION_REJ_RESOURCES	0x04
RFC_CONNECTION_REJ_NOT_READY	0×05
RFC_CONNECTION_FAILED	0×06
RFC_CONNECTION_TIMEOUT	0×07
RFC_NORMAL_DISCONNECT	0×08
RFC_ABNORMAL_DISCONNECT	0×09
RFC_CONFIG_UNACCEPTABLE	0x0a
RFC_CONFIG_REJECTED	0x0b
RFC_CONFIG_INVALID_CID	0x0c
RFC_CONFIG_UNKNOWN	0x0d
RFC_CONFIG_REJECTED_LOCALLY	$0 \times 0 \mathrm{e}$
RFC_CONFIG_TIMEOUT	0x0f
RFC_REMOTE_REFUSAL	0×11
RFC_RACE_CONDITION_DETECTED	0×12
RFC_INSUFFICIENT_RESOURCES	0×13
RFC_CANNOT_CHANGE_FLOW_CONTROL_MECHANISM	0x14

RFC_DLC_ALREADY_EXISTS	0×15
RFC_DLC_REJ_SECURITY	0×16
RFC_GENERIC_REFUSAL	$0 \times 1 f$
RFC_UNEXPECTED_PRIMITIVE	0×20
RFC_INVALID_SERVER_CHANNEL	0×21
RFC_UNKNOWN_MUX_ID	0×22
RFC_LOCAL_ENTITY_TERMINATED_CONNECTION	0×23
RFC_UNKNOWN_PRIMITIVE	0×24
RFC_MAX_PAYLOAD_EXCEEDED	0×25
RFC_INCONSISTENT_PARAMETERS	0×26
RFC_INSUFFICIENT_CREDITS	0×27
RFC_CREDIT_FLOW_CONTROL_PROTOCOL_VIOLATION	0×28
RFC_RES_ACK_TIMEOUT	0×30

Table 7: RFCOMM errors

10. USEFUL I NFORMATI ON

This chapter contains some useful information about iWRAP and WRAP THOR module usage.

10.1 Changing Parameters over RS232 with PSTool

PSTool software allows the user to change the internal parameters (PS keys) of the module. Most of the parameters should not be touched, since they can affect the performance of the module. On the other hand, there are some useful parameters, which can not be accessed from iWRAP, such as hardware flow control, host interface parameters and so on.

Notice that although the parameters can be easily changed over the UART interface, incorrect configuration may prevent iWRAP from working and block any other than SPI communications with the module.
iWRAP has a useful feature called AutoBCSP. With AutoBCSP, iWRAP can automatically recognize BCSP (BlueCore Serial Protocol) traffic and is able to interpret it. BCSP can be used to change the internal parameters and is also supported by the PSTool software.

To change the internal parameters, proceed as follows:

1. Connect an RS2323 cable between the WRAP THOR and your PC
2. Power up the WRAP THOR module
3. Open PSTool
4. Use the default connection settings: BCSP, COMn and 115200
5. Change the needed parameters (remember to press 'SET' after changing the parameter value)
6. Close PSTool and reset WRAP THOR
iWRAP is automatically activated after a reset, unless parameters affecting iWRAP operation are changed.

NOTE:

*) When using BCSP, the UART baud rate does NOT depend on the "SET CONTROL BAUD" configuration, but is defined by using PS key "PSKEY_UART_BAUD RATE". By default, the parameter value is 115200 bps.

The AutoBCSP feature only works if PSKEY_UART_BAUD_RATE and "SET CONTROL BAUD" have same values!

Refer to PSTool User Guide for more information about PS keys and PSTool usage.
PSTool can be also used through the SPI interface. A cable called Onboard Installation Kit is needed.

10.2 Using BlueTest over RS232

BlueTest is a piece of software, which can be used to perform several built-in radio tests, such as Bit Error Rate (BER) measurements, TX power measurements and RX measurements. BlueTest also uses the BCSP protocol to talk to the module and can be used in a similar way as PSTool.

To use BlueTest:

1. Connect an RS2323 cable between the WRAP THOR and your PC
2. Power up the WRAP THOR module
3. Open BlueTest
4. Use the default connection settings: BCSP, COMn and 115200
5. Perform the necessary tests
6. Close BlueTest and reset WRAP THOR

10.3 Switching to HCI Firmware

New WRAP THOR firmware builds are called unified firmware (firmware versions 18.2 and later). This means that the firmware contains both iWRAP firmware and RFCOMM and HCI stacks. Selecting the active part is done by using PS keys and there is no need to reflash the actual firmware as with older versions of iWRAP.

Switching can be done by using PSTool software.

1. Connect the WRAP THOR module as instructed in chapter 8.1.
2. Change the following parameters to switch to HCl mode
a. PSKEY_INITIAL_BOOTMODE
i. $\quad 0000=$ iWRAP
ii. $0001=\mathrm{HCI}, \mathrm{BCSP}, 115800,8 \mathrm{n} 1$
iii. $0003=\mathrm{HCI}$, USB
iv. $0004=\mathrm{HCl}, \mathrm{H} 4,115200,8 \mathrm{n} 1$
b. PSKEY_UART_BAUDRATE (Suitable value if H4 or BCSP used)
c. PSKEY_UART_CONFIG_H4 PSKEY_UART_CONFIG_BCSP (Suitable key/value)
d. PSKEY USB XXXX
(If USB is used, configure the necessary keys)

Note:

PSTool 1.21 or later is needed to change the parameters mentioned above.

10.4 Firmware Updates over SPI

The SPI interface is dedicated to firmware updates. The Onboard Installation Kit and a Windows ${ }^{\text {TM }}$ software called BlueFlash can be used to update / restore the firmware. Please see BlueFlash user guide for more information.

Bluegiga also has a tool called iWRAP update client, which is an easier and the suggested way to do the firmware upgrade. iWRAP update client can recognize the hardware and software version of the module and reflash correct firmware and parameters into the module, and the user just needs to select the firmware version. Please refer to iWRAP update user guide for more information.

10.5 Firmware Updates over UART

The firmware can also be updated over the UART or RS232 interface. A method called Device Firmware Upgrade (DFU) is needed. Bluegiga has a DFU Wizard tool, which allows the updates to be made from a Windows ${ }^{\text {TM }}$ based PC in a similar way as with BlueFlash.

There is also a possibility the write the DFU support into a host processor connected to the WRAP THOR module. In this way, the firmware can be updated even if the module cannot be accessed from a PC.

The DFU protocol is open and the description can be requested from Bluegiga customer support.

DFU file sizes:

- iWRAP update: ~20-30kB
- Bluetooth stack update: ~700kB
- Full update (max DFU size): $\sim 1 \mathrm{MB}$

10.6 Hardware Flow Control

Hardware flow control is enabled by default. It can be disabled by changing the value of PSKEY_UART_CONFIG_XXX (XXX = USR or H4 or H5 or BCSP). With iWRAP, the PS key is PSKEY_UART_CONFIG_USR.

- If PSKEY_UART_CONFIG_USR is 08a8, HW flow control is enabled
- If PSKEY_UART_CONFIG_USR is 08a0, HW flow control is disabled

Hardware flow control can be disabled also with a proper hardware design. If the flow control is enabled from PS-keys, but no flow control is used, the following steps should be implemented in the hardware design:

- WT12 CTS pin must be grounded
- WT12 RTS pin must be left floating

WARNI NG:

If hardware flow control is disabled and iWRAP buffers are filled (in command or data mode), the firmware will hang and needs a physical reset to survive. Therefore, hardware flow control should be used whenever possible to avoid this situation.

However, if hardware flow control must be disabled, the host system should be designed in a way that it can recognize that the firmware has hung and is able to survive it.
10.7 RS232 Connections

Figure 6: RS232 connections
10.8 PS Keys Used by iWRAP Firmware TBA

10.9 Bluetooth Profiles Overview

10.9.1 Generic Access Profile (GAP)

GAP provides the basis for all other profiles and defines a consistent means to establish a baseband link between Bluetooth enabled devices. In addition to this, GAP defines the following:

- The features that must be implemented in all Bluetooth devices
- Generic procedures for discovering and linking to devices
- Basic user-interface terminology

10.9.2 RFCOMM

The RFCOMM protocol emulates the serial cable line settings and the status of an RS-232 serial port. It is used for providing serial data transfer. RFCOMM connects to the lower layers of the Bluetooth protocol stack through the L2CAP layer. By providing serial port emulation, RFCOMM supports legacy serial port applications while also supporting the OBEX protocol, among others. RFCOMM is a subset of the ETSI TS 07.10 standard, along with some Bluetooth-specific adaptations.

10.9.3 Service Discovery Protocol (SDP)

SDP defines how a Bluetooth client application acts to discover an available Bluetooth enabled server services and characteristics. SDP provides means for the discovery of new services becoming available when the client enters an area where a Bluetooth enabled server is operating. SDP also provides functionality for detecting when a service is no longer available. SDP defines a service as any feature that is usable by another Bluetooth device. A single Bluetooth enabled device can be both a server for and a client to services.

An SDP client communicates with an SDP server using a reserved channel on an L2CAP link to find out what services are available. When the client finds the desired service, it requests a separate connection to use the service. The reserved channel is dedicated to SDP communication so that a device always knows how to connect to the SDP service on any other device. An SDP server maintains its own SDP database, which is a set of service records that describe the services the server offers. Along with information describing how a client can connect to the service, the service record contains the service's UUID, or a universally unique identifier.

10.9.4 Serial Port Profile (SPP)

SPP defines how to set-up virtual serial ports and to connect two Bluetooth enabled devices. SPP is based on the ETSI TS07.10 specification and uses the RFCOMM protocol to provide serial port emulation. SPP provides a wireless replacement for existing RS-232 based serial communications applications and control signals. SPP provides the basis for the DUN, FAX, HSP and LAN profiles. This profile supports a data rate of up to 128 $\mathrm{kbit} / \mathrm{sec}$. SPP is dependent on GAP.

10.9.5 Hands-Free Profile (HFP)

HFP describes how a gateway device can be used to place and receive calls for a hand-free device. A typical configuration is an automobile using a mobile phone for a gateway device. In the car, the stereo is used for the phone audio and a microphone is installed in the car for sending outgoing audio. HFP is also used for a personal computer to act as a speakerphone for a mobile phone in a home or office environment. HFP uses SCO to carry a mono PCM audio channel.

10.9.6 Dial-up Networking Profile (DUN)

DUN provides a standard to access the Internet and other dial-up services over Bluetooth technology. The most common scenario is accessing the Internet from a laptop by dialing up on a mobile phone wirelessly. It is based on SPP and provides for relatively easy conversion of existing products, through the many features that it has in common with the existing wired serial protocols for the same task. These include the AT command set specified in ETSI 07.07 and PPP.

Like other profiles built on top of SPP, the virtual serial link created by the lower layers of the Bluetooth protocol stack is transparent to applications using the DUN profile. Thus, the modem driver on the data-terminal device is unaware that it is communicating over Bluetooth technology. The application on the data-terminal device is similarly unaware that it is not connected to the gateway device by a cable.

DUN describes two roles, the gateway and terminal devices. The gateway device provides network access for the terminal device. A typical configuration consists of a mobile phone acting as the gateway device for a personal computer acting as the terminal role.

10.9.7 Object Push Profile (OPP)

OPP defines the roles of push server and push client. These roles are analogous to and must interoperate with the server and client device roles that GOEP defines. It is called push because the transfers are always instigated by the sender (client), not the receiver (server). OPP focuses on a narrow range of object formats to maximize interoperability. The most common acceptable format is the vCard. OPP may also be used for sending objects such as pictures or appointment details.

Source:

Bluetooth SIG, URL:
http:/ / www.bluetooth.com/ Bluetooth/ Learn/ Works/ Profiles Overview.htm

10.10 Bluetooth Power Saving

SNI FF mode:

Once a Bluetooth device is connected to a Piconet, it can enter one of three power saving modes. In SNIFF mode, the activity of a Bluetooth device is lowered, enabling it to listen at a reduced rate to the Piconet. The interval or period between SNIFF is configurable.

The SNIFF mode is the least power efficient of all three power saving modes.

PARK state:

The Park state can be used when a Bluetooth device is connected to the Piconet but does not participate in traffic transfer.

The PARK state conserves most power compared with the other power saving modes.

General information about power saving:

On the SNIFF mode and on the PARK state, the devices have a reduced participation on the traffic of messages and packets. On the SNIFF mode, this occurs only at 'SNIFF intervals' and at the PARK state at the beacons (at this mode the device also listens to broadcast messages).

The main advantage for using PARK mode over SNIFF mode is that it leads to reduced power consumption and gives more time for the parked slave to participate on different Piconet(s).

10.11 HFP and HFP-AG commands

When using Hands Free, the following commands are supported:

Command	Function	AT mapping
ANSWER	Answer to call	ATA
DISCONNECT	Hang-up call	AT+CHUP
DTMF [code]	Send DTMF code to Audio Gateway	AT+VTS
HANGUP	Hang-up call	AT+CHUP
REJECT	Reject call	AT+CHUP

Table 8: HFP supported commands
When using Hands Free Audio Gateway following commands are supported:

Command	Function	AT mapping
ANSWER	Answer to call	callsetup 0, call 1
DISCONNECT	Hang-up call	callsetup 0, call 0
ERROR	Send ERROR result to Hands Free	error
HANGUP	Hang-up call	callsetup 0, call 0
REJECT	Reject call	callsetup 0, call 0
OK	Send OK result to Hands Free	ok
RING [count] [number]	Notify Hands Free for incoming call. [count] indicates the amount of indications. [number] displays the number from where the call is coming from	callsetup in ring, AT+CLIP ring is sent [count] times, if [number] is given, AT+CLIP is sent
STATUS	Set status and send it to Hands Free	AT+CIND

Table 9: HFP-AG supported commands
The supported AT-commands for hands Free profile can be found from the specification document : https://www.bluetooth.org/foundry/adopters/document/HFP_1.5_SPEC_V10.

10.12 HFP and HFP-AG messaging

When HFP or HFP-AG profiles are used iWRAP will parse some of the AT commands coming from the remote end and will not "display" them to the user i.e. write to UART.
iWRAP will recognize and parse the following AT commands:

- AT+CLI P
- AT+COPS
- AT+VGS
- AT+CMIR
- AT+BLDN
- AT+CHUP

The messages HFP or HFP-AG profiles will produce are described below:

- "AT+VGS=\% s $\backslash \mathbf{r} "$

Volume control info

- "\% s \% d READY $\backslash \mathbf{r} \backslash \mathbf{n "}$

SLC connected / HFP ready

- "\% s \% d NO CARRIER $\backslash \mathbf{r} \backslash$ "

Call ended

- "\% s \% d CONNECT $\backslash \mathbf{r} \backslash \mathbf{n}$ "

Call active

- "\% s \% d CALLI NG $\backslash \mathbf{r} \backslash \mathbf{n "}$

Outgoing call

- "\% s \% d RINGING $\backslash \mathbf{r} \backslash \mathbf{n "}$

Incoming call

- "\% s \% d BUSY $\backslash \mathbf{r} \backslash \mathbf{n}$ "

Line busy

- "\% s \% d UNKNOWS (\% x)"

Unrecognized command
$\% \mathbf{s}=$ "HFP" or "HFP-AG" (expect with volume ctrl. where it's volume level)
\% d = link ID
$\% \mathrm{x}=$ HFP state
$\% \mathbf{y}=$ unrecognized AT-command string

10.13 Bluetooth profile UUI Ds

UUI D:	Bluetooth Profile:
0001	SDP
0003	RFCOMM
0008	OBEX
000C	HTTP
000F	BNEP
0100	L2CAP
1000	Service Discovery Server Service ClassID
1001	Browse Group Descriptor Service ClassID
1002	Public Browse Group
1101	Serial Port Profile
1102	LAN Access Using PPP
1103	Dial up Networking
1104	IrMC Sync
1105	OBEX Object Push Profile
1106	OBEX File Transfer Profile
1107	IrMC Sync Command
1108	Headset
1109	Cordless Telephony
110A	Audio Source
110B	Audio Sink
110C	A/V_Remote Control Target
110D	Advanced Audio Distribution Profile (A2DP)
110E	A/V_Remote Control
110F	Video Conferencing

1110	Intercom
1111	Fax
1112	Headset Audio Gateway
1113	WAP
1114	WAP_CLIENT
1115	Personal Area Networking User
1115	PANU
1116	Network Access Point
1116	NAP
1117	Group Network
1117	GN
1118	Direct Printing
1119	Reference Printing
111A	Imaging
111B	Imaging Responder
111C	Imaging Automatic Archive
111D	Imaging Referenced Objects
111E	Hands free
111F	Handsfree Audio Gateway
1120	Direct Printing Reference Objects Service
1121	ReflectedUI
1122	Basic Printing
1123	Printing Status
1124	Human Interface Device Service

1125	Hardcopy Cable Replacement
1126	HCR_Print
1127	HCR_Scan
1128	Common_ISDN_Access
1129	Video Conferencing GW
112A	UDI_MT
112B	UDI_TA
112C	Audio/Video
112D	SIM_Access
112E	Phonebook Access - PCE
112F	Phonebook Access - PSE
1130	Phonebook Access
1200	PnP Information
1201	Generic Networking
1202	Generic File Transfer
1203	Generic Audio
1204	Generic Telephony
1205	UPNP_Service
1206	UPNP_IP_Service
1300	ESDP_UPNP_IP_PAN
1301	ESDP_UPNP_IP_LAP
1302	ESDP_UPNP_L2CAP
1303	Video Source
1304	Video Sink

Table 10: UUIDs and Profiles
For more information, please go to:
https://programs.bluetooth.org/apps/content/?docid=49709

11. TROUBLESHOOTI NG

11.1 I get no response from iWRAP?

Make sure your terminal settings are correct. Use PSTool to check the UART settings from the WRAP THOR Bluetooth module and make similar settings to your terminal software.

Check also your ECHO MODE settings. If you have set ECHO MODE to 0 , you should not be able to see any responses.

You can also use iWRAP update to restore the firmware and default settings.

11.2 I changed 'UART Baud rate’ key, but it didn't seem to work?

UART baud rate is stored now into user keys instead of 'UART baud rate' key. Delete 'User configuration data 26' in order to return back to default settings 115200,8n1.

Notice also that if you change the baud rate with "SET CONTROL BAUD", it does not affect the baud rate you need to use with PSTool, if you want to access parameters. This baud rate is defined by the 'UART baud rate' key.

AutoBCSP requires that iWRAP baud rate is same as 'UART baud rate' key.

11.3 Data coming from the UART is corrupted

If you are using 'Deep sleep' the minimum baud rate that can be used is 19200. Lower baud rates will corrupt the data.

11.4 I'm missing characters when I type ASCII commands.

If deep sleep is used, the first character written to UART wakes the module from the "Deep sleep' and that's why the character is lost. There are two ways to overcome this problem:

1. If you command iWRAP with a micro controller or processor, add 'space' or 'line break' characters in front of every command.
2. In PSTool, set parameter 'EXIT deep sleep on CTS line activity' to TRUE. Now 'Deep sleep' does not lose characters any more, but current consumption will increase.

12. KNOWN ISSUES

Issue	Explanation			
Using multiple DLCs can crash iWRAP	Opening several connections to iWRAP using the same channel may crash the firmware. UUID should be used instead of a channel. This is a bug in the CSR firmware.			
Listing remote SDP record may run out of memory	When a service discovery is made by using the SDP command and if root mode is used and remote device supports many services, iWRAP may run out of memory and reset. To overcome this, only a specific service should be searched for instead of using root mode.			
Do not force sniff	If sniff is enabled by using the ‘SET BT SNIFF' command, iWRAP cannot unsniff if remote end requests for it.			
Frame mode flow control hangs	In multiplexing mode, the firmware will hang if data length is longer than 100 bytes. A physical reset is needed. This is a bug in the CSR firmware.			
Data does not leave buffer	Sometimes if small amount of data is received, it may remain in the incoming buffer until more data is received. This is a bug in the CSR firmware.			
Command parser	If RSSI in the inquiry and clock offset caching are enabled, connections can not be opened. This is a bug in the CSR firmware.			
SEquiry RSSI and clock caching	If HW flow control is not used and iWRAP buffers are filled either in data or command mode, the firmware will hang and needs a physical reset. This is a bug in the CSR firmware.			
SW flow control	Two simultaneous ACL connections can not be opened between two iWRAPs.			
iWRAPs	Issuing SET conTROL INIT RESET will result in an infinite reset loop. PSKEY_USR_27 must be deleted to survive this condition.			
iWRAP command parser is case sensitive with UUIDs				
and Bluetooth addresses		$	$	inection between two
:---	:---			

Table 11: iWRAP known issues

13. SUPPORT

- For technical questions and problems, please contact: support@bluegiga.com
- Firmware, parameters, tools and documentation can be downloaded from: http:/ / www.bluegiga.com/ techforum/

14. RELATED DOCUMENTATI ON

Please also take a look at the following documentation:

- iWRAP Update Client User Guide
- DFU Wizard User Guide
- BlueFlash User Guide
- PSTool User Guide
- Performance Measurement Guide
- Bluetooth specification (www.bluetooth.org)

Visit also Tech-forum (www.bluegiga.com/techforum/) for additional information and design references.

15. I WRAP CONFI GURATI ON EXAMPLES

Some iWRAP configuration and usage examples are presented in the following chapters.

15.1 Simple SPP Slave

In this example, iWRAP is configured to be a transparent SPP slave module, which only accepts connections and transmits data. No events or any other information is displayed. The configuration is displayed in the figure below:

[四 Tera Term Web 3.1-COM3 VT	$\square \square$
File Edit Setup Web Control window Help	
SET BT BDADDR 00:07:80:04:00:ae	\wedge
SET BT NAME WT-Slave	
SET BT CLASS 001f00	
SET BT AUTH * 12345	
SET BT PAGEMODE 320001	
SET BT ROLE 0 f 7d00	
SET CONTROL BAUD 115200,8n1	
SET CONTROL CD 000	
SET CONTROL ECHO 0	
SET CONTROL ESCAPE 43001	
SET	
	\checkmark

Figure 7: Slave configuration
The important settings in the figure are the following:

- SET BT PAGEMODE 320001

With this setting, iWRAP is configured to be visible in the inquiry and to be connectable as a slave module should be.

On the other hand, in some cases the slave mode does not need to be visible in the inquiry. In this case, our setting would be: SET BT PAGEMODE 2000 1. If iWRAP is not visible in the inquiry, the current consumption will be $1-2 \mathrm{~mA}$ lower.

- SET BT ROLE 0 f 7d00

With this setting, we have simply defined that iWRAP does not ask for a masterslave switch when it us being connected. On the other hand, all the link options (power saving etc.) are enabled if master wants to use them. This is the default setting.

- SET CONTROL ECHO 0

This is an important setting since we want the slave module to be transparent. That is why we disable all the event messages and boot banner by setting echo mode to 0.

Other options:

- The timeouts for the slave module can be also configured. For the slave, probably the supervision timeout is important, that is, when the slave notices that the connection is lost. This timeout is configured by using the "SET BT ROLE" command.
- Sometimes the data rate is important and the slave does not need to know about data and command mode switches. In these cases, it might be useful to disable the escape sequence to obtain a higher data rate. This is done, for example, by issuing command: "SET CONTROL ESCAPE-00 1". With the second parameter, one of the available PIO pins can be dedicated to be used as a DTR signal (to close the connection).
- To enable automatic power saving during connections, "SET BT SNIFF" with appropriate parameters can be used.
- To minimize idle time power consumption, deep sleep can be enabled by issuing the "SET CONTROL CONFIG 10" command.

15.2 Simple SPP Master

In this example, iWRAP is configured to be a transparent SPP master module, which always tries to keep/open a connection to a defined device and keep up transparent data mode where events or any other information are not displayed. The configuration is displayed in the figure below:

```
#W Tera Term Web 3.1 - COM2 VT
File Edit Setup Web Control Window Help
SET BT BDADDR 00:07:80:01:11:43
SET BT NAME WT-master
SET BT CLASS 301f00
SET BT AUTH * 0666
SET BT PAGEMODE 0 2000 2
SET BT PAIR 00:07:80:04:00:ae 4dcab77aaa01758661c669a341a3faf4
SET BT ROLE 0 f 7d00
SET CONTROL AUTOCALL 1
SET CONTROL BAUD 115200.8n1
SET CONTROL CD 80 0
SET CONTROL ECHO O
SET CONTROL ESCAPE 43 00 1
SET
```

Figure 8: Transparent master
The important settings in the master module are the following:

- SET BT PAGEMODE 020001

The master module does not need to be visible in the inquiry nor connectable, since it only opens connection(s). That is why we have chosen this page mode. This also conserves power and speeds up connection openings.

- SET BT PAI R 00:07:80:04:00:ae 4dcab77aaa01758661c669a341a3faf4

The master module needs to know where it opens the connection. In iWRAP, this is done based on the pairings. The slave module is the one and only paired device in the master's memory. See "SET CONTROL AUTOCALL" for more information.

- SET BT ROLE 0 f 7d00

This is the default setting. Usually the master module is a Piconet master, but in some cases slaves want to do a master slave switch. That is why we allow it to be more flexible with any kind of devices.

Tip:

When configuring Bluetooth networks with the WRAP Access Server, it is wise to configure the access server to act as a master device, even if it does not open the actual connections. For these kind of cases, it is also wise to allow the master slave switch even on a master module.

- SET CONTROL AUTOCALL 1

This is the key setting in a master module, since it enables the autocall feature. Parameter ' 1 ' indicates that the master module tries to open the connection using RFCOMM channel 1 . This is only a safe setting when the slave device is another iWRAP module, since iWRAP uses Serial Port Profile always on channel 1. With other devices, instead of ' 1 ' you should use '1101' (UUID) if you want to open an SPP connection.

Tip:

Using the channel instead of UUID is faster, because when using UUID a service discovery is made and that takes around 300 ms time. However, UUID is safer since the channel for SPP might vary between different devices.

- SET CONTROL ECHO 0

This is an important setting since we want the master module to be transparent. That is why we disable all the event messages and boot banner by setting echo mode to 0 .

- SET CONTROL CD 800

When using a transparent master module, it is difficult to know if there is a connection or not, since no events are displayed. That is why we have enabled the carrier detect signal with command SET CONTROL CD 800 . This means that when there is a connection, IO7 is driven high. This can also be done in the slave module.

Tip:

Using 107 for CD signal is wise especially when using WRAP THOR Evaluation Kits, since there is a led connected to IO7.

Options:

- The timeouts for the master module can be also configured. For the master, probably the supervision timeout is important, that is, when it notices that the connection is lost. This timeout is configured by using the "SET BT ROLE" command. Also the time how long a connection establishment can take before error occurs might be important, at least for non transparent masters. This, on the other hand, can be configured by using the "SET BT PAGEMODE" command.
- Sometimes the data rate is important and there is a possibility to use DTR signaling for controlling data and command mode switches. In these cases, it might be useful to disable the escape sequence to obtain a higher data rate. This is done, for example, by issuing command: "SET CONTROL ESCAPE-80 1". Parameter '80' defines that IO 7 is used as a DTR signal. Notice, however, that CD and DTR signals cannot be configured to use the same IO.

15.3 Bluetooth Networking with iWRAP and WRAP Access Server

In this example, a Bluetooth network with WRAP Access Servers and iWRAP master modules is built. The network consists of several access servers and several iWRAP modules. The purpose of this network is to provide a transparent 'always on' connectivity from iWRAP modules to a PC over Bluetooth and Local Area Network. The figure below illustrates this kind of a network set up:

The configuration in iWRAP is similar to the one in our second example.
Also the WRAP Access Servers must be configured correctly. The application providing the connectivity between the PC and iWRAPs is know as SPP-over-IP and it is a standard feature in the WRAP Access Server with software version 2.0.4 and later.

Please refer to SPP-over-IP documentation to see how access servers are configured.
Now, if there are several WRAP Access Servers in our network and iWRAP devices are mobile, a little bit more configuration in iWRAP modules is needed. In a mobile situation, we want the iWRAP to connect to the WRAP Access Server which is in its range.

```
[T] Tera Term Web 3.1 - COM2 VT
File Edit Setup Web Control Window Help
SET BT BDADDR 00:07:80:01:11:43
SET BT NAME WT-master
SET BT CLASS 301f00
SET BT AUTH * 0666
SET BT PAGEMODE 020002
SET BT PAIR 00:07:80:04:00:ae 4dcab77aaa01758661c669a341a3faf4
SET BT PAIR 00:60:57:a6:56:49 8d511188326fcdf 821 f 2 fd 142 edf f 33 f
SET BT ROLE 0 f 7 d 00
SET CONTROL AUTOCALL 1
SET CONTROL BAUD 115200.8 n 1
SET CONTROL CD 800
SET CONTROL ECHO 0
SET CONTROL ESCAPE 43001

Figure 9: Configuration for multiple slaves
As you see, the configuration is similar to the configuration in the second example. The only difference is that now there are two pairings in iWRAP, that is, iWRAP is pared with two access servers.

If there are several pairings in iWRAP and the autocall feature is enabled, a transparent inquiry is made. When the first paired device is found in the inquiry, iWRAP ends the inquiry and tries to connect this device. If the connection is successful, iWRAP stays connected until the connection is closed or lost.

If all the access servers in this network are paired with all the iWRAPs, it is possible to achieve a transparent 'data only, always on' network with this configuration. Of course, there will be a short break in the connection if the connection is closed or lost and iWRAP is searching for a connection to a new access server.

\subsection*{15.4 Dial-up Networking}
iWRAP has some support for Dial-Up Networking (DUN). The most common use case of DUN is a connection to a mobile phone. Modern smart phones support the DUN profile and it gives you access to the GSM/GRPS modem inside the phone, that is, you can control the phone with AT commands over a Bluetooth link (send SMS messages, open GSM or GPRS connections, and browse the phone book). The simplified example below shows how to open a DUN connection to a phone and how to send an "AT" command to the phone.


Figure 10: How to open a DUN connection to a mobile phone
The pin needs to be set, since for some reason most of the mobile phones always require the PIN code authentication.

It may be wise to do the pairing from the mobile phone and make the iWRAP module 'trusted'. Once this is done, the phone does not ask for the PIN code every time the connection is opened.

Notice that not all the mobile phones support the same AT commands!

\subsection*{15.5 OBEX Object Push Profile Server}

This example shows how to set up a simple Object Push Profile (OPP) server for receiving files over Bluetooth.


Figure 11: Receiving files through OPP
"SET PROFILE OPP on" enables the needed OBEX profiles in iWRAP for receiving the files. In the example, the PIN code is disabled so that the phone does not prompt for the PIN when sending the file.

OPP can be disabled by using the "SET PROFILE OPP" command and issuing "RESET".
Some devices also require that that Class of Device (CoD) is configured correctly before they are able to send files via OBEX. A correct class of device setting can be found from the Bluetooth specification.
\begin{tabular}{|c|c|}
\hline WIT Tera Term Web 3.1 - COM2 VT & \(\square \square\) \\
\hline Eile Edit Setup Web Control Window Help & \\
\hline ```
SET BT OPP 1
OBEX 2
RING 0 00:60:57:a6:56:49 2 OBEX
PUT 114 text/X-vCard Bluegiga Technologies.vcf
BEGIN : VCARD
VERSION:2.1
N:Bluegiga Technologies
TEL;CELL:+35894355060
URL : http://www .bluegiga.com
END : VCARD
NO CARRIER 0 ERROR 0
``` & \(\wedge\) \\
\hline
\end{tabular}

Figure 12: Receiving a vCard over OPP

\section*{15.6 iWRAP to iWRAP Audio + Data Connection}
iWRAP also supports SCO (audio) connections. This example shows how to open a simple iWRAP audio connection.

Figure 13: ACL data + SCO audio connection setup
"SET CONTROL CONFIG 100" is a fix to a CSR bug, which disables the master-slave switch and is needed for SCO connections. This command only needs to be given once. The "SCO ENABLE" command is needed, on the other hand, to indicate to iWRAP that audio connections will be used. This command needs to be given every time after a reset. "SET CONTROL INIT SCO ENABLE" can be used to automatically enable the feature.

PS key "Map SCO over PCM" must be set to TRUE for the audio to be transmitted.
Audio is routed directly to the PCM interface of the module. The existing ACL connection can be used to send and receive data.

\section*{15.7 iWRAP to Hands-Free Audio Connection}
iWRAP can also be used to transmit audio to a Bluetooth headset in a similar way as iWRAP to iWRAP audio works. The example below shows how this is done.

Figure 14: iWRAP to headset audio connection
Audio connection to a headset is pretty straightforward to setup. First, the initializations must be done, second the HFP-AG connection to headset-profile is opened (UUID for hands-free is 111e) and finally, the SCO connection must be set up.

Once all this is done, the RFCOMM connection can be used to transmit AT commands between the headset and iWRAP and the SCO connection to transmit audio. Please refer to the headset / hands-free profile specification for supported AT commands:
https://www.bluetooth.org/foundry/adopters/document/HFP_1.5_SPEC_V10

\section*{NOTE:}

UUIDs for HFP and HFP-AG need to be given in lower case format i.e. 111e and 111f, NOT 111E and 111F.

\section*{15.8 iWRAP to Mobile Phone Audio Connection}
iWRAP can act as a hands-free device and send audio to a mobile phone. The example below reveals how that is done.

Figure 15: HFP connection to a mobile phone

\section*{NOTE:}

UUIDs for HFP and HFP-AG need to be given in lower case format i.e. 111e and 111f, NOT 111E and 111F.

\subsection*{15.9 Wireless IO Replacement}
iWRAPs can be used to do wireless IO replacement, that is, to transmit the status of GPIO PINs over the SPP link. This means that if the status of the local IO changes, so does the status of the remote IO. This functionality can be accomplished by using the MSC (Modem Status Control) feature in iWRAP.

Figure 16: Wireless 10 replacement connection
The example above was done with WT12 evaluation kits. In the evaluation kit, there is a DSR button in PIO5 and a LED in PIO7. Parameter 80 matches with PIO7 and parameter 20 with PIO5. So whenever DSR button is pressed in the local device, the LED status changes in the remote end.

\section*{NOTE:}

Switching the IO status very rapidly may reset iWRAP. There is also a delay when transmitting the MSC status over the Bluetooth link. Without power saving in use, this delay is roughly 20 ms and if power saving is in use, the delay depends on SNIFF mode parameters.```

[^0]: NAME 00:07:80:bf:bf:01
 NAME ERROR 0x104 00:07:80:bf:bf:01 HCI ERROR PAGE TIMEOUT

[^1]: SET CONTROL MUX 1
 ¿READY

