AT91SAM7 Serial Communications

Author:

James P. Lynch
Grand Island, New York, USA
June 22, 2008

AT91SAM7 Serial Communications 1 0f 91

Preface

I've been extremely gratified by the positive response I've received via email concerning my tutorials. Many
readers have asked me for help with serial communications and interrupts on ARM microcontrollers. These
requests have resulted in this tutorial “AT91SAM7 Serial Communications” which delves into interrupt-
driven and DMA-based serial communications on Atmel AT91SAM7 microcontrollers. Readers will find
helpful and detailed information on setting up a USART to be driven by character-by-character interrupts or
DMA block transfer techniques.

This tutorial follows in the footsteps of my Atmel tutorial “Using Open Source Tools for AT91SAM7 Cross
Development” and I'm assuming that you have read that one first. There is an appendix herein that shows
how to set up an Eclipse project; there have been a few changes in the Eclipse and GNU Tool Chain since |
authored the Atmel tutorial.

To the many generous people have emailed me with helpful suggestions and support, I'm very appreciative

of their kindness.

AT91SAM7 Serial Communications 2 Of 91

Table of Contents

= =Tt T PP 2
a1t geTe [UTed (o] o FO USSP 5
Universal Synchronous Asynchronous Receiver TransSmitter......... oo 6
LYo Ao L O] o1 = 11] o PP 7
o T T Lo I e (=Y C =Y =Y = 1o o 8
Steps to Make USARTO ReadY-t0-RUN..........uuiiiiiiiiiie e e e e e e e e se e e e e e e e e e e e e e e e eeenes 10
Turn on the USARTO Peripheral ClIOCK.uiii ettt 10
Give the USARTO Peripheral Control of the PiNsS.........ccoiiiiiiiiiii i 13
Set Up the USARTO REQISTEIS......uuiiiiiiiiie ittt ettt e s s e e ennnreeaan e eeas 16
Control Register - Reset then Disable the Receiver/Transmitter..........c.cooccveveiiiiierer i 16
Mode Register — Set up Character FOrmat, €tC..........cooiiiiiiiiiiiiiice e 18
Interrupt Enable Register — Enable Desired USARTO INterruptoocueviiiiiiiii e 20
Interrupt Disable Register — Disable Desired USARTO Interruptooooociiiiiiii e 21

Baud Rate Generator Register — enter baud rate clock divider............cccovveiiiiiiiiiiice e, 22

Set Up the USARTO Registers that are not Used.............oooiiiiiiiiiiii s 23
Setting Up the Advanced Interrupt Controller (AIC)....... ... e e e e e eeaes 24
Final Preparations for USARTO Interrupt ProCeSSING........couiiiiiiiiiiiiiiiee et e e 28
Assembly Language Part of the IRQ HaNdIEr ... 29
Designing the USARTO IRQ HANAIET..........ooi ettt a et e e e e e et e e e e eenenennnennneas 30
Flowchart — USARTO INterrupt HAnAIET.........ueeeeeiii e e e e e e e e e e e eanans 31
Project Listings — INterrUPt VEISION..........ueiiiiiiiiiiie ettt e e e e e eb e e e e e aenenes 32
ATOTSAMT X256 H..... ettt ettt e e et e e e e e st e e e e sttt e e s ssaeeeeesansbeneeeeansaaeeaaaaaaaaaaaeeeeaeeees 32

1@ 7N N o SRR 33

L o 0 PR 33
ISRSUPPORT.C ...ttt ettt e ottt e e e o b bt e e e e e bbbt e e e e abb et e e e e anbbee e e e e anbbeeeeaeeaeeens 38
LOWIEVEIINIT.C..ce ettt oottt et e e e e e e e e oo e e bbbt e e e e e e e e e e e e e s s annbbbeeeeeeaaaeeaeenennnnses 39
= o oSSR 41

L0 LT (0 o2 PPPPPPPR 42
L= L (0 ST 1o X o SR 43
DEeMO_ SAMT7X256.CIMA.ooiiiiiiiiiiicee ettt e et e e e e e e ettt e e e e e e e e e e aaeeeaeeaaaaaaaaaeeeestanaeeesanaeeerannnns 50
0= 1 1P 52

10 o1=TaToTeTo I o] fe o = .4 e { RO 55

1@ 01=1 3 (o Teo o (o FHR PR 56

ST] o oo o X 56

= TU 1] T [T a T g L= o =Y o2 PO RSPNE 57
Adding an LED to the Olimex SAM7-EX256 BOArd............coiouiiiaiiiiiieae et e e e e e e e e e ee e 57
Programming the Sample Application int0 FIash.............ooo e 58
Testing the Interrupt Driven APPIICATION.oii et e e e e eeenaan s 59
DIFECE MEMIOIY ACCESS.eeeeee ittt ettt e e e ettt e e oo a e et e oo ea b bt e e e e o et et e e e e eatae bbb bbb bbbt 62
USARTO DIMA REGISEEIS. ...ttt ettt e e e e et e e e e e e e e e e e et b e e e e e eaaaeeesaaaaeseeeeeeeesssnnnnes 62
USARTO PDC Receive Pointer REGISTEr........coiiiiiiiei e 63
USARTO PDC Receive Counter REGISTEN...........uuiiiiiiiiiec ettt e e e e s 63
USARTO PDC Transmit POIinter REGISTE.........coii et e e e e e e e e 64
USARTO PDC Transmit Counter REGISIEr..........oo it e e e 64
USARTO PDC Receive Next Pointer REGISTEN..........ueiiiii ittt 65
USARTO PDC Receive Next Counter REGISTEr.........ooiiiiiiiieiee e 65
USARTO PDC Transmit Next Pointer REGISIEr.........c..uuiiiiiiiiiieice e 66
USARTO PDC Transmit Next Counter REGISIEr......c.ooi i 67
USARTO PDC Transfer Control REGISTEN..........uuiiiiiiiii et e e e e e e e e 67

AT91SAM7 Serial Communications 3 0f 91

Set Up fOr DIMA INTEITUPES.....cooeeieeeeeee ettt ettt eaaaaas 68

1Y N oY =Y (U o1l F= T o | Y PP RPN 69
Project LiStiNgsS — DIMA VEBISION........eiiiiiiiiiee ettt ettt e e e e bt e e e e e st et e e s aanenenenennne 71
USARTO _SETUPR.C ...ttt e e a bttt e e e et e e e e e ea b bt e e e e e h b bt e e e e e nba e e e e aaaaaaaaaaaaens 71
L0 0] o SRR 79
(ST01]To [TaTe I i g LY DAY VAN Y o] o] o= 11T o AR 80
Other POSSIDIIIES.ceieee ettt e e e e et e aaaens 81
Y oY T 1 1T XU T S 82
F Y o] 01T Lo [PO 83
Download Yagarto COMPONENES.eiiiiiiiiiiie e et ee e et e e s e et eeeeesaasteeeeeeaaseeeeeeaaaseeeeeeaannesessessnsnnnnnnnnnnnnnnnns 83
Install the YAGARTO COMPONENTS.......uuuitiiiiiiiiiiiiieee e eeeeee ettt e e e e e e e e e e e aeaaaaaaeeestaeeesestaaaaaes 84
TS e= | I @ o T=Y o 10 1O 84
INSTAIl ECHPSE IDE..... .o e e e e e e e e et e e e e e e e e e e e e e e ee e e ee e s eaasssssaaaaaa e e eesaaeeeesaneeeennns 84
Install YAGARTO GNU ARM TOOI ChaiN.......coiiiiiiiiie ittt ee e e e e e e e e ee e 84
TS = 1| I Y €7 S @ I T] 84
INStall the JTAG DEVICE DIFIVEIS. ... ittt et e e e et e et et et e et e e e e eeeeeeeeeeeeeees 84
Y= G0 o T o = Y 85
Create an Eclipse Standard C ProjECL........ ..o ittt e e e e e e s s eeeaenn e e e e eeeennnes 85
Import the SamPpIe ProjECt FIlES. ettt e e e s et e e e e e e aaaaaeas 87
BUIIA the PIOJECL. ...ttt e et e e e e bbbt e e e e esb e e e e s anebebnbabbnenenee 89
Set Up a Second Make Target for Flash Programming.............ccooiiiiiiiiiiiiiiiie e 90

AT91SAM7 Serial Communications 4 Of 91

Introduction

Ten billion ARM microprocessor chips have been shipped to date. The ARM chips have a 75% market
share in the 32-bit embedded marketplace. These ARM chips are in most of the cell phones including the
new Apple iPhones. ARM Holdings is a British chip design company; other manufacturers such as Atmel,
ST, Texas Instruments, NXP, Intel, etc. actually fabricate the chips. Since the architecture is common, the
various chip vendors battle it out in terms of on chip memory and peripherals.

Atmel has a very nice line of ARM7 embedded controller chips called the AT91SAM7 family. The
AT91SAM7X256 chip has three serial RS-232 peripherals. There are two USARTS (Universal Synchronous
Asynchronous Receiver Transmitter) called USARTO and USART1. The only difference between the two
USART peripherals is that USART1 has more modem control signals. The third serial peripheral is called
the Debug Unit which is a very simple UART (Universal Asynchronous Receiver Transmitter) with just a
two-wire interface (send and receive).

Using the USART serial interface in interrupt mode is difficult for the novice; using the USART in DMA mode
(Direct Memory Access) is even more mysterious. In this tutorial, | will cover in great detail design of a serial
USART application that is interrupt-driven. | will also demonstrate the same application built with DMA block
transfer techniques which is much more efficient.

In each case, the application will accept incoming characters and retransmit them back to the source. The
interesting design variant is that the application will collect 10 incoming characters and retransmit the 10
characters back to the source only after the tenth incoming character has been received. This application
can be tested with either the Open Source RealTerm utility or the Windows utility Hyper Terminal and a
standard 9-pin serial cable.

The serial interface applications are built with the Eclipse IDE and the YAGARTO GNU ARM toolchain.
Readers should download and read my tutorial “Using Open Source Tools for AT91SAM7 Cross
Development”. This document is hosted at the Atmel web site and can be downloaded from here:

http://lwww.atmel.com/dyn/resources/prod_documents/atmel_tutorial_source.zip

The completed serial communications
application was tested on an Olimex
SAM7-EX256 evaluation board which
can be purchased from Spark Fun
Electronics and other outlets for
around $120 (US funds).

The Olimex board used here employs
the Atmel AT91SAM7X256 chip,
which includes an Ethernet port, a
USB interface, 256k of FLASH, 64k of
RAM, and a large number of other
peripherals.

AT91SAM7 Serial Communications 5 0f 91

http://www.atmel.com/dyn/resources/prod_documents/atmel_tutorial_source.zip

Universal Synchronous Asynchronous Receiver Transmitter

The subject of USARTS and serial communications is so complex that one could write a book on it; indeed
there are numerous books available. A particularly good reference is “Serial Port Complete: COM Ports,
USB Virtual COM Ports, and Ports for Embedded Systems” by Jan Axelson, available from Amazon.

Atmel's USART peripheral is extremely sophisticated and can operate in many different modes, such as
asynchronous, synchronous, RS-485, Smart Card protocol and Infra-red protocol. To keep things as simple
as possible, we will be operating USARTO in “asynchronous” mode at 9600 baud with 1 start bit, 8 data bits,
1 stop bit, and no parity to be compatible with your PC's COM1 serial port. The Atmel diagram below shows
the part of the AT91SAM7X256 chip we will be using.

Atmel AT91SAM7X256 - Serial Interfaces

ol
e JTAG ICE ARM7TDMI
TCH SCAN Processor
JTAGSEL |
1.8V |e— vDDIN
Voltage | |— GnD
o System Controller Regulator—— voDout
F—— ac A |+— voncome
IRG0-F Memary Controller SRAM [=— wDDIO
PRI O T (L e ey L Embedded Address | b= 124
- = Flash
B o= - Koyes
= [roc | £
A LN NNNRRRRN]RY TTTTinnnanip Abort Misa]ignment
PCEoFCK2 Status Detection ——— VDOFLASH
PLLAC — > Flash
o i
e PMC X 512/255/128
HOUT =— K
RGOSGC Peripheral Bridge +
—*| ECD Peripheral DA ROM
FLasH Reset ¢ Gantreler S
: : 0RE —| POR | Controller 7 Chaet pFae‘ Flazh | |1 — panmioe
We will be using USARTO OUMITING | (4 POMK e
HRST nEaeE | e paMDoPGNDIE
4—— PGMCH
<4—— PGMENCPGMEN
AFB SAM-BA
lLI Ohla <> ETNCKERKCK.EREFCK
FFD —>| |<t=>E N
PloA PIOE #——3% ECASECCL, ECRSDV
o <> EmxERERIDY
e TranciiieRiiiiiciitEassmsssas Ehermet MAC 107100 <> EANeERI:
: RXDG d FOC |- —|"|=t> cnEn:
THID H —>| |12 cuoc
- 5 vewm _Jie S
........... » 4 8 [NP a
AT EEEIE o j i et | VODRLasH
o : [FFO]
BCK1 [+ H . : —= DM
ETTE USART1 H — USE Devica .‘__.. ooe
DCO H =
i = N
il . —+
....... PP Bt 1 PR a2 H > PWMC e
3 el — = Rk
papgrac < FET | [+ 1= TF
EFio_NPC3a E | | T
SPi_MIS0 556 — . E%
—| [AK
spnb g POC |+t RF
R | Timer Courter |4 o T
e B | 3 Toke
- |-4— Tiaa
SEI‘—% jl TG |4+ TiOB:
£Pi-2hr PO Te1 [T
ADTRG —= PO
&Do . B -+ TIaz
31 TSR |4 TIOEz
z [+—| [#—= TWD
#hz L ADC < = ™I t—| [TWCK
ﬁﬂ 1 |4 CahRM
e GAN ——| [+ CanNTx
AD7 FOC =
ADHREF AES128
PO
POC
TDES
ROC

AT91SAM7 Serial Communications 6 Of 91

Theory of Operation

While the description of this USART peripheral encompasses 45 pages in the Atmel data sheet, its basic
operation is fairly simple. The primary thing to remember is that USARTO has just one interrupt. When it
occurs, you have to read the Channel Status Register within your interrupt service routine to determine
exactly what happened (Receiver Ready or Transmitter Empty, for example). There is a Receive Holding
Register (32 bits) that holds the incoming character and a Transmit Holding Register (32 bits) where you
can insert the next character to be transmitted. The following diagram illustrates these points.

Baud Rate
Incoming L Generator
i - Receive Shift Register
Receive Holding Register
v
Transmit Shift Register ——»/{_ Jugoing
Transmit Holding Register
vry .
Interrupt p- UARTO
Generator Interrupt

To receive characters, you wait until there's a “Receiver Ready” (RXRDY) interrupt and then read the
character out of the Receive Holding Register in the interrupt service routine. You have to do this fairly
quickly if there's a stream of incoming characters expected.

In the case of transmit, you have two choices. There are two basic interrupts available for transmit
operations. First is the Transmitter Ready (TXRDY) interrupt. This occurs when you have placed an
outgoing character into the Transmit Holding Register and it has immediately dropped down into the
transmit shift register. This is a indication that you can now insert another outgoing character into the
Transmit Holding Register even though the previous character may still be clocking out of the shift register.
The second choice is the Transmitter Empty (TXEMPTY) interrupt. This is signaled when both the Transmit
Holding Register and the transmit shift register are empty. In my view, this one indicates that you are really
done transmitting — all bytes have been sent!

My preference is to use the TXEMPTY interrupt and this is what | will demonstrate in the upcoming
examples.

AT91SAM7 Serial Communications 7 Of 91

There are many other USART interrupts available. The USARTO can indicate error conditions, such as
overrun, framing error, break detection, and parity error. You can enable these interrupts and scan for them
in the interrupt service routine. These error interrupts are latched in the Channel Status Register and you
must clear them by setting the “Reset Status Bits” field in the USARTO Control Register. This error handling
is not demonstrated in the tutorial examples.

Baud Rate Generation

In synchronous mode, the baud rate clock comes in over the SCK pin from the transmitting source. We are
demonstrating asynchronous mode where we must generate the baud rate clock internally. The following
diagram from the Atmel data sheet shows the logic of baud rate generation.

The value of USCLKS is set
in the Mode Register US_MR

The values of CD and FIDI are set in
Figure 30-3. |Baud Rate Generator the Baud Rate Register US_BRGR

MCK will be our | USCLKS | | CcD |/ The value of OVER and SYNC is set

clock source in the Mode Register US_MR

L mek | |

0
MCK/DIV 1
Reserved 16-bit Counter
SCK —2 v = v _
3/ | OVER |
00— Sampling 0
Divider
Baud Rate
Clock
y
SYNC
Sampling
USCLKS =3 o)

The Atmel data sheet gives the following formula for the baud rate (page 302).

SelectedClock

Baudrate =
(8(2-0OVER)CD)

First, we decide to use MCK as our clock source. To determine value of MCK, we have to refer to how the
Olimex SAM7-EX256 board was initialized. The Olimex SAM7-EX256 board has a 18,432,000 Hz crystal
oscillator.

MAINCK = 18432000 Hz (crystal frequency, from Olimex schematic)
DIV =14 (set up in lowlevelinit.c)
MUL =72 (set up in lowlevelinit.c)

PLLCK = (MAINCK / DIV) * (MUL + 1) = 18432000/14 * (72 + 1) (phase lock loop clock)

AT91SAM7 Serial Communications 8 Of 91

PLLCLK = 1316571 * 73 = 96109683 Hz
MCK = PLLCLK /2 = 96109683 / 2 = 48054841 Hz (main clock MCK)

Baud Rate (asynchronous mode) = MCK / (8(2 - OVER)CD)

MCK =48054841 hz (set bit field USCLKS = 00 in USART Mode Register US_MR

to select “MCK only”)

OVER =0 (bit 19 of the USART Mode Register US_MR)
CD =divisor (USART Baud Rate Generator Register US_BRGR)
baudrate = 9600 (desired)
48054841 48054841
a little algebra: BaudRate = =
(8(2 - 0)CD) 16(CD)

Plugging in 9600 for the baud rate and rearranging the equation will give
an equation for the value of the CD counter.

48054841 48054841
CD = = = 312.857037
9600(16) 153600

CD =313 (round up)

48054841 48054841
check the actual baud rate: BaudRate = = = 9595.6
(8 (2-0)313 5008
what's the error:
desired baudrate 9600
Error=1 - =1- = 1-1.00045854 = -.0004585
actual baudrate 9595.6

Error = -.0004585 (that's not very much!)

It should be very easy to calculate the required constants for other standard baud rates. Make a mental
note that we will have to set up the following baudrate constants in the USARTO registers to get 9600 baud.

Constant |USARTO Register Value Description
USCLKS Mode Register 00 Select MCK as the baud rate clock source
OVER Mode Register 0 Select 16x over-sampling
CD Baud Rate Generator 313 Clock divisor to get 9600 baud
Register
SYNC Mode Register 0 Select “asynchronous” mode
FIDI FI DI Ratio Register 0 Only used in ISO7816 mode

AT91SAM7 Serial Communications 9 Of 91

Steps to Make USARTO Ready-to-Run

One of the reasons why all these ARM embedded controller chips are so affordable is that the chips “share”
the external pins between peripherals or standard I/O points. This keeps the total number of pins on the
AT91SAM7X256 package below 100.

The AT91SAM7X256 has 62 external pins that can be used as I/O ports or assigned to support the various
peripherals. Page 32 of the AT91SAMX256 Data Sheet states that “At Reset, all I/O lines are automatically
configured as input with the programmable pull-up enabled ...”.

The USARTO peripheral has five possible external pins (RXD0, TXD0, SCKO0, RTS0, CTSO0). On the edge of
the chip package, these pins are labeled PAQ, PA1, PA2, PA3, and PA4.

But these five pins could also be used as I/O ports and some of the same pins can be used as part of the
second SPI peripheral. How do we sort this out?

Turn on the USARTO Peripheral Clock

The very first thing to do is to turn on the USARTO's peripheral clock; forgetting to do this guarantees
failure. In an attempt to reduce the chip's power consumption, every on-chip peripheral's clock source is
turned off at power-on reset. Refer to the chapter in the Data Sheet titled “Power Management Controller
(PMC)” to learn how turn the peripheral clocks “on”.

The specific register to turn on the peripheral clocks is the PMC Peripheral Clock Enable Register, as
shown below (from page 192 of the Data Sheet).

25.9.4 PMC Peripheral Clock Enable Register

Register Name: PMC_PCER

Access Type: Write-only
3 30 29 28 27 28 25 24

[Pp31 | pPDao | PD2e | PD2s | PD2r | PDes | PID2s | PiD24 |
23 22 21 20 19 16 17 16

[PD2z [PD22 | PO | PD20 [PDI9 | PDi8 | PIDI7 | PIDiE |
15 14 13 12 11 10 9 8

[PDis | P14 [PR3 | PDi2 | PDIL [PDI0c | PDeg | P8 |
7 6 5 4 3 2 1 0

[por | pPps | pPDs | PDse [PO [PD2 | - | - |

* PIDx: Peripheral Clock x Enable
0 = No effect.

1 = Enables the corresponding peripheral clock.

The novice reader is probably asking at this point “which one of those PIDxx bits above is USARTO0"? The
answer is Chapter 10, page 31 in the Data Sheet, in a table called “Peripheral Identifiers.

Table 10-1. Peripheral Identifiers

External
Peripheral ID Peripheral Mnemonic Peripheral Name Interrupt
0 AlC Advanced Interrupt Controller FlQ
1 SYSCi System
2 P10 Parallel 110 Controller &
3 PIOE Parallel 110 Controller B
4 SPIo Serial Perigheral Interface 0
5 SPI Serial Perigheral Interface 1

AT91SAM7 Serial Communications 10 Of 91

Table 10-1. Peripheral Identifiers

External

Peripheral ID Peripheral Mnemonic Peripheral Mame Interrupt
= Uso USARTO

7 Usi LUSART 1

8 S5C Synchronous Serial Controller

9 TwWI Tweo-wire Interface

10 PWMC Pulse Width Modulation Controller

i uDp USB device Port

12 TCO Timer/Counter O

13 TCH Timer/Counter 1

14 TC2 Timer/Counter 2

15 CaN CAN Controller

16 EMAC Ethernet MaC

17 aDct Analog-to Digital Converter

18 AES Advanced Encryption Standard 128-bit

19 TDES Triple Data Encryption Standard

20-29 Reserved

30 AlC Advanced Interrupt Controller IRCQO

31 AlC Advanced Interrupt Controller IRQ1

There it is, in the table above, listed as USO0, bit 6. Therefore, we need to set bit 6 of the PMC Peripheral
Clock Enable Register (PCER) to logic “one” (all the other bits will be undisturbed). To do this, we'll need a
pointer to this register. If we include the standard Atmel include file (at91sam7x256.h) in our project, this is
fairly easy to do. Consider the following two lines of C code.

volatile AT91PS_PMC pPMC
pPMC->PMC_PCER

AT91C_BASE_PMC;
(1<<AT91C_ID_USO);

// pointer to PMC data structure
// enable usart0 peripheral clock

Just this one time, let's analyze in detail the above two lines. The include file (at91sam7x256.h) has a C
structure that describes the PMC registers. The structure AT91S_PMC consists of twenty eight 32-bit
integers, each representing a register of the Power Management Controller (PMC) set.

typedef struct _AT91S_PMC {
AT91_REG PMC_SCER; // System Clock Enable Register
AT91_REG PMC_SCDR; // System Clock Disable Register
AT91_REG PMC_SCSR; // System Clock Status Register
AT91 REG Reserved0[1]; //
AT91 REG PMC_PCER; // Peripheral Clock Enable Register
AT91 _REG PMC_PCDR; // Peripheral Clock Disable Register
AT91_REG PMC_PCSR; // Peripheral Clock Status Register
AT91_REG Reservedl[1]; //
AT91_REG PMC_MOR; // Main Oscillator Register
AT91_REG PMC_MCFR; // Main Clock Frequency Register
AT91_REG Reserved2[1]; //
AT91_REG PMC_PLLR; // PLL Register
AT91_REG PMC_MCKR; // Master Clock Register
AT91_REG Reserved3[3]; //
AT91_REG PMC_PCKR[4]; // Programmable Clock Register
AT91_REG Reserved4[4]; //
AT91_REG PMC_IER; // Interrupt Enable Register
AT91_REG PMC_IDR; // Interrupt Disable Register
AT91_REG PMC_SR; // Status Register
AT91 REG_PMC_TMR; // Interrupt Mask Register

} AT91S_PMC,| *AT91PS_PMC;

AT91SAM7 Serial Communications

11 Of 91

Note in the C structure above, we also have a pointer to the PMC structure called *AT91PS_PMC.

Now we need to assign the actual physical base address of the PMC structure to the pointer, the handy
Atmel include file gives us that too!

// BASE ADDRESS DEFINITIONS FOR AT91SAM7X256

//

#define AT91C_BASE_SYS ((AT91PS_SYS) OxFFFFFO00) // (SYS) Base Address
#define AT91C_BASE_AIC ((AT91PS_AIC) OxFFFFFO00) // (AIC) Base Address
#define AT91C_BASE_PDC_DBGU ((AT91PS_PDC) O0xFFFFF300) // (PDC_DBGU) Base Address
#define AT91C_BASE_DBGU ((AT91PS_DBGU) OxFFFFF200) // (DBGU) Base Address
#define AT91C_BASE_PIOA ((AT91PS_PIO) OxFFFFF400) // (PIOA) Base Address
#define AT91C BASE_PIOB ((AT91PS_PIO) 0XFFFFF600) // (PIOB) Base Address

= [#define AT91C BASE:PMC ((AT91PS_PMC) exFFFFFCOG) // (PMC) Base Address

Fdetine A
#define AT91C BASE:RTTC ((AT91PS_RTTC) GxFFFFFDZO) // (RTTC) Base Address

..... and soon

Note above that the #define constant AT91C_BASE_PMC identifies the physical location of the base
address of the PMC registers to be OxFFFFFCO0O0. Therefore, the first line above creates a pointer pPMC to
the PMC structure and assigns the base address to the pointer. It's a good idea to set the “volatile” attribute
to prevent the compiler from attempting any optimization on this statement.

volatile AT91PS PMC pPMC = AT91C BASE PMC;

Two final bits of the puzzle remain. The PMC Peripheral Clock Enable Register is an element of the
AT91S_PMC data structure; if pPMC is a pointer to the PMC structure, then the contents of the “Peripheral
Clock Enable Register” itself can be expressed by:

pPMC->PMC_PCER = value;

Now we are almost done. If we can set the value of the “Peripheral Clock Enable Register” by a C
statement as shown above, how do we set the bit associated with USART0? We know that it is bit 6, so the
following statement below will work. Remember that a binary logic “one” will set a bit, binary logic “zero” will
have no effect (in other words, it won't disturb the other bits).

pPMC->PMC_PCER = 0x00000040;

True, the above statement is OK, but coding purists will say that this construct involves a “magic constant”.
This is frowned upon because it is not clear where the constant came from. Once again, the Atmel include
file has a handy constant to make things a bit clearer.

#define AT91C ID USO ((unsigned int) 6) // USART 0

AT91SAM7 Serial Communications 12 Of 91

Now it becomes easy to access any of the PMC registers using our pPMC “pointer to a structure”. The
following statement will set bit 6 of the PMC Peripheral Clock Enable Register. There are no “magic
constants” and it is clear that we are setting bit 6 of the register and not disturbing any of the other bits.

pPMC->PMC_PCER = (1<<AT91C ID USO);

To repeat, the following two C statements will turn on the peripheral clock of USARTO.

volatile AT91PS_PMC pPMC
pPMC->PMC_PCER

AT91C_BASE_PMC;
(1<<AT91C_ID_USO);

// pointer to PMC data structure
// enable usart0 peripheral clock

For the rest of this tutorial, the techniques described above will be used without any additional explanation.

Give the USARTO Peripheral Control of the Pins

We mentioned earlier that the AT91SAM7X256 boots up at reset with all pins set as I/O in input mode. So
we need to specify that pins PAO, PA1, PA2, PA3, and PA4 are to be connected to the peripheral USARTO.

The Atmel include file has a C structure for the PIO controller registers.

typedef struct _AT91S_PIO {
AT91_REG PIO_PER; // PIO0 Enable Register
AT91_REG PIO_PDR; // PIO Disable Register
AT91 REG PIO_PSR; // PIO0 Status Register
AT91_REG ReservedO[1]; //
AT91_REG PIO_OER; // Output Enable Register
AT91 REG PIO_ODR; // Output Disable Registerr
AT91_REG PIO_OSR; // Output Status Register
AT91_REG Reservedl[1l]; //
AT91_REG PIO_IFER; // Input Filter Enable Register
AT91 _REG PIO_IFDR; // Input Filter Disable Register
AT91_REG PIO_IFSR; // Input Filter Status Register
AT91_REG Reserved2[1]; //
AT91_REG PIO_SODR; // Set Output Data Register
AT91_REG PIO_CODR; // Clear Output Data Register
AT91_REG PIO_ODSR; // Output Data Status Register
AT91_REG PIO_PDSR; // Pin Data Status Register
AT91_REG PIO_IER; // Interrupt Enable Register
AT91_REG PIO_IDR; // Interrupt Disable Register
AT91_REG PIO_IMR; // Interrupt Mask Register
AT91 _REG PIO_ISR; // Interrupt Status Register
AT91_REG PIO_MDER; // Multi-driver Enable Register
AT91 REG PIO_MDDR; // Multi-driver Disable Register
AT91_REG PIO_MDSR; // Multi-driver Status Register
AT91_REG Reserved3[1]; //
AT91_REG PIO_PPUDR; // Pull-up Disable Register
AT91_REG PIO_PPUER; // Pull-up Enable Register
AT91 _REG PIO PPUSR; // Pull-up Status Register
AT91_REG Reserved4[1]; //
AT91_REG PIO_ASR; // Select A Register
AT91_REG PIO_BSR; // Select B Register
AT91_REG PIO_ABSR; // AB Select Status Register
AT91_REG Reserved5[9]; //
AT91_REG PIO_OWER; // Output Write Enable Register
AT91_REG PIO_OWDR; // Output Write Disable Register
AT91_REG PIO_OWSR; // Output Write Status Register
} AT91S_PIO, *AT91PS_PIO;

AT91SAM7 Serial Communications

13 Of 91

First, we can set up a pointer to the Parallel Input/Output Controller (P10) structure.

volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA;

We can simplify things a bit by noting that we only intend to use the RXDO and TXDO pins of the full
USARTO pin set (RXDO0, TXD0, SCKO, RTS0, CTSO0). In the setup below, you should note that we are
ignoring the pins (SCKO0, RTS0, CTSO0). There are no ill effects from this decision; we don't normally send
the baud rate clock SCKO to the outside world in an asynchronous serial application and the “request to
send” pin RTS0 and “clear to send” pin CTSO0 aren't normally used in a simple RS-232 hookup. This leaves
us with just two pins to set up, pin PAO (RXDO0) and pin PA1 (TXDO).

First, we disable PIO control of these two pins. Use the PIO Controller PIO Disable Register (PIO_PDR) to
do this. This is effectively telling the PIO controller that we will not be using these pins as simple 1/O points.

27.7.2 PIO Controller P10 Disable Register

Name: PIO_PDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| Pat | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 18 18 17 18

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 a8

| P15 | P14 | Pi3 | P12 | P11 | P10 | P9 | P8 |
7 8 5 4 3 2 1 0

| P7 | Ps | P5 | P4 | P3 | P2 | P1 | PO |

+ P0-P31: PIO Disable

0 = No effect.

1 = Disables the P1O from controlling the corresponding pin (enables peripheral control of the pin).
I'll leave it to the reader to use the Eclipse F3 key to find the definitions of these constants in the include
file.

pPIO->PI0 PDR = AT91C PAO RXDO | AT91C_PAl TXDO;

Now we have to assign these two pins to a peripheral. You have two choices, Peripheral Set A or
Peripheral Set B. The Atmel Data Sheet, Table 10-2 on page 33 shows the choices; below is a portion of
that table.

Table 10-2. Multiplexing on PIO Centroller A

PIO Controller A Application Usage
/O Line Peripheral A Peripheral B Comments Function Comments

PAO RXDo High-Drive

PAA TXDo High-Drive

PAZz SCKo SPH_NPCS1 High-Drive

PASZ RTS0 SPH_NPCS2 High-Drive

PA4 CT30 SPIH_NPCS3

PAS RXD1

PAG TXDA

PAT SCK1 SPI0_NPCS1

PAgS RTSA SPIo_NPCS2

PAS CTS1 SPlo_NPCS3

AT91SAM7 Serial Communications 14 Of 91

Note that pins PAO and PA1 (RXDO and TXDO, respectively) are listed above as being part of Peripheral
Set A. The PIO Peripheral A Select Register (PIO_ASR) lets us select Peripheral Set A for those two pins.

27.7.24 PIO Peripheral A Select Register

Name: PIO_ASR

Access Type: Write-only
31 30 28 28 27 26 25 24

| P3t | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 [P19 | P13 | P17 [P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 [P11 | P10 | Pg [P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | Pz | P1 | PO |

* P0-P21: Peripheral A Select.
0 = No effect.

1 = Assigns the /O line to the Peripheral A function.

pPI0->PI0_ASR = AT91C_PIO_PA® | AT91C_PIO_PA1;

While not required, we'll set the PIO Peripheral B Select Register (PIO_BSR) to zero (“no effect) just for the
sake of clarity.

27.7.25 PIO Peripheral B Select Register

Name: PIO_BSR

Access Type: Write-only
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P23 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P | Ps |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | Pa | P2 | P1 | Po |

* P0-P31: Peripheral B Select.
0= No effect.

1 = Assigns the IO line to the peripheral B function.

pPIO->PIO BSR = 0;

At this point, we have the USARTO peripheral clock turned on and the two pins (RXD0 and TXDO) are
associated with the USARTO peripheral.

AT91SAM7 Serial Communications 15 Of 91

Set Up the USARTO Registers

To set up the USARTO registers, we'll need a pointer to the USART data structure. The same data structure
will suffice for both USARTO and USART1. Here is the USART data structure from the Atmel include file:

typedef struct _AT91S_USART {
AT91 _REG US_CR; // Control Register
AT91_REG US_MR; // Mode Register
AT91_REG US_IER; // Interrupt Enable Register
AT91 REG US_IDR; // Interrupt Disable Register
AT91_REG US_IMR; // Interrupt Mask Register
AT91_REG US_CSR; // Channel Status Register
AT91_REG US_RHR; // Receiver Holding Register
AT91_REG US_THR; // Transmitter Holding Register
AT91 REG US_BRGR; // Baud Rate Generator Register
AT91_REG US_RTOR; // Receiver Time-out Register
AT91 REG US_TTGR; // Transmitter Time-guard Register
AT91_REG ReservedO[5]; //
AT91_REG US_FIDI; // FI_DI_Ratio Register
AT91_REG US_NER; // Nb Errors Register
AT91_REG Reservedl[1l]; //
AT91_REG US_IF; // IRDA_FILTER Register
AT91_REG Reserved2[44]; //
AT91_REG US_RPR; // Receive Pointer Register
AT91 REG US_RCR; // Receive Counter Register
AT91 REG US_TPR; // Transmit Pointer Register
AT91_REG US_TCR; // Transmit Counter Register
AT91_REG US_RNPR; // Receive Next Pointer Register
AT91_REG US_RNCR; // Receive Next Counter Register
AT91_REG US_TNPR; // Transmit Next Pointer Register
AT91 REG US_TNCR; // Transmit Next Counter Register
AT91_REG US_PTCR; // PDC Transfer Control Register
AT91_REG US_PTSR; // PDC Transfer Status Register

} AT91S USART, *AT91PS USART;

As shown several times before, a pointer to the USART data structure can be created as shown below.
Note that we assigned the base memory address specific to USARTO.

volatile AT91PS_USART pUsart0 = AT91C_BASE_USO;

Control Register - Reset then Disable the Receiver/Transmitter

A prudent first move in initializing the USARTO is to “reset’” the USARTO receiver and transmitter and then
disable both to prevent any surprises while we set up the rest of the USARTO registers. We can use the
USARTO Control Register to do this.

30.71 USART Control Register

Name: US_CR

Access Type: Write-only
31 30 29 28 27 26 25 24

- - r-1+r - r -1+ - [-1 - T = /]
23 22 21 20 19 18 17 16

‘ - | - | - | - | RTSDIS | RTSEN ‘ DTRDIS | DTREN |
15 14 13 12 11 10 9 8

‘ RETTO | RSTNACK | RSTIT | SENDA | STTTO | STPBRK ‘ TTBRK | RSTSTA |
7 6 5 4 3 2 1 0

[XD [TXEN | RXDS | RAXEN | RSTIX | RSIAX | - | - |

AT91SAM7 Serial Communications 16 Of 91

Shown directly below are the meanings of the various bits in the USARTO Control Register.

o RSTRX: Reset Receiver e STPBRK: Stop Break
0: No effect. 0: No effect.
1: Resets the receiver. 1: Stops transmission of the break after a minimum
o RSTTX: Reset Transmitter of one character length and transmits a high
0: No effect. level during 12-bit periods. No effect if no
1: Resets the transmitter. break is being transmitted.
* RXEN: Receiver Enable e STTTO: Start Time-out
0: No effect. 0: No effect.
1: Enables the receiver, if RXDIS is 0. 1: Starts waiting for a character before clocking
* RXDIS: Receiver Disable the time-out counter. Resets the status bit
0: No effect. TIMEOUT in US_CSR.
1: Disables the receiver. e SENDA: Send Address
e TXEN: Transmitter Enable 0: No effect.
0: No effect. 1: In Multidrop Mode only, the next character written
1: Enables the transmitter if TXDIS is . to the US_THR is sent with the address bit set.
o TXDIS: Transmitter Disable e RSTIT: Reset Iterations
0: No effect. 0: No effect.
1: Disables the transmitter. 1: Resets ITERATION in US_CSR. No effect if the
o RSTSTA: Reset Status Bits IS07816 is not enabled.
0: No effect. o RSTNACK: Reset Non Acknowledge
1: Resets the status bits PARE, FRAME, 0: No effect
OVRE, and RXBRK in US_CSR. 1: Resets NACK in US_CSR.
e STTBRK: Start Break e RETTO: Rearm Time-out
0: No effect. 0: No effect
1: Starts transmission of a break after the 1: Restart Time-out
characters present in US_THR and the Transmit o DTREN: Data Terminal Ready Enable
Shift Register have been transmitted 0: No effect.
1: Drives the pin DTR at 0.
o DTRDIS: Data Terminal Ready Disable
0: No effect.
1: Drives the pin DTR to 1.
o RTSEN: Request to Send Enable
0: No effect.
1: Drives the pin RTS to 0.
o RTSDIS: Request to Send Disable
0: No effect.
1: Drives the pin RTS to 1.

In the C statement below, we set the USARTO Control register to reset the transmitter and receiver and
then disable both of them.

pUsart0->US_CR = AT91C_US_RSTRX | // reset receiver
AT91C_US_RSTTX | // reset transmitter
AT91C_US_RXDIS | // disable receiver
AT91C_US_TXDIS; // disable transmitter

We will “enable” the receiver as one of the last steps in setting up the USART.

AT91SAM7 Serial Communications 17 Of 91

Mode Register — Set up Character Format, etc.

The USARTO Mode Register is a “catch-all” for setting up various communications parameters. We know
we want to set up 1 start bit, 8 data bits, 1 stop bit and no parity. We also want to set up “asynchronous”
mode and select MCK to drive the baud rate clock. The layout of the USARTO Mode Register is as follows:

30.7.2 USART Mode Register

Name: Us_MR

Access Type: Read/Write
3 30 29 28 27 26 25 24

| - | - | - | FILTER | - MAX_ITERATION |
23 22 21 20 19 18 17 16

| - | - | DSMNACK | INACK | CVER CLKO MODE2 | MSEF |
15 14 13 12 11 10] 8

| CHMODE | NESTOP | PAR | SYNC |
7 6 4 3 2 1 0

| CHRL | USCLKS | USART_MODE |

There are a number of fields in this Mode Register, here are some of the settings available.

* USART_MODE

USART_MODE

Mode of the USART

Normal

RAS485

Hardware Handshaking

We want “normal” mode for this field.

Since this is 0000 and is the default reset
condition, we won't have to set this field.

Modem

1507816 Protocol: T=0

Reserved

1507816 Protocel: T =1

Reserved

IrDA

= |o|lo|le|le|le|e|e|e

sle|lalalalalelelole

% o= |oje|=|=|o|e

® |o|=|lo|=|o|=|o|=|o

Reserved

* USCLKS: Clock Selection

USCLKS

Selected Clock

MCK

MCK / DIV

Reserved

alalele
el |e

SCK

+ CHRL: Character Length.

We want “MCK” clock for this field (see
previous baud rate calculation).

Since this is 00 and is the default reset
condition, we won't have to set this field.

CHRL

Character Length

5 bits

6 bits

7 bits

alale|lo

-lo|=|o

8 bits

AT91SAM7 Serial Communications

We want “8 bits” character length for this
field.

Since this is 11, we will have to set this
field.

18 Of 91

+ SYNC: Synchronous Mode Select We want “Asynchronous” mode for this field.

0: USART operates in Asynchronous Mode.
1: USART operates in Synchronous Mode.

PAR: Parity Type

Since this is 0 and is the default reset condition, we
won't have to set this field.

PAR Parlty Type We want “No Parity” for this field.
o 0 0 Even parity
o 0 1 Qdd parity Since this is 100, we will have to set
0 1 0 Parity forced to 0 (Space) this field.
o 1 1 Parity ferced to 1 (Mark)
1 0 X Mo parity
1 1 I3 Multidrop mode

* NBSTOP: Number of Stop Bits

NBSTOP Asynchronous (SYNC = 0 Synchronous (SYNC = 1 . N N
n {) n ¢) We want “1 stop bit” for this field.
0 0 1 stop bit 1 stop bit
0 1 1.5 stop bits Reserved Since this is 00 and is the default reset
y o 2 stop bits 2 stop bits condition, we won't have to set this field.
1 1 Reserved Resarved

¢ CHMODE: Channel Mode

CHMODE Mode Description
0 0 Normal Mode We want “Normal” mode for this field.
0 1 Autematic Echo. Receiver input is connected to the TXD pin Since this is 00 and is the default reset
1 0 Local Loopback. Transmitter output is connected to the Receiver Input.. condition, we won't have to set this field.
1 1 Remote Loopback. RXD pin is internally connectad to the TXD pin.

* MSBF: Bit Order We want “Least Significant Bit” order for

0: Least Significant Bit is sent/received first. this field. Since this is 0, we won't have

1: Most Significant Bit is sent/received first. to set this field.

* MODES: 9-bit Character Length We don't want “9-bit char” length for this
0: CHRL defines character length. field. Since this is 0, we won't have to

1: 9-bit character length. set this field.

* CLKO: Clock Output Select We want “USART does not drive SCK” pin
0: The USART does not drive the SCK pin. for this field. Since this is 0, we won't
1: The USART drives the SCK pin if USCLKS does not select the external clock SCK. |have to set this field.

* OVER: Oversampling Mode We want “16X Oversampling” mode for

0: 16x Oversampling. this field. Since this is 0, we won't have

1: 8x Oversampling. to set this field.

INACK: Inhibit Non Acknowledge |This is not applicable in simple “Normal”

0: The NACK is generated. mode — so leave as 0. Thus we won't have

. i to set this field.
1: The NACK is not generated. This is not applicable
+ DSNACK: Disable Successive NACK in simple “Normal”
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set). "_I'_zde =80 Iea'\tn;as 0.
1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener- to suest rﬁswf?er:d ave
ate a NACK on the IS0 line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag .

ITERATION is asserted.

This is not applicable in simple “Normal”
* MAX_ITERATION mode — so leave as 0. Thus we won't have
Defines the maximum number of iterations in mode 1SO7816, protocol T= 0. [to set this field.
* FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line. This is not applicable in simple “Normal”

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority)| Mode — so leave as 0. Thus we won't have
to set this field.

AT91SAM7 Serial Communications 19 Of 91

Based on the notes in the USARTO Mode Register description above, we can tabulate the following Mode
Register settings:

USARTO0 Mode Register Settings

Field Setting |Description

USART_MODE 000 Select Normal mode of the USART

USCLKS 00 Select MCK as source for baud rate generation

CHRL 1" Select 8 bit character length

SYNC 0 Select USART operates in Asynchronous mode

PAR 100 Select no parity

NBSTOP 00 Select 1 stop bit

CHMODE 00 Select Normal Channel Mode

MSBF 0 Select Least Significant Bit transmitted first

MODE9 0 Select CHRL (above) defines char length (no 9-bit chars)
CLKO 0 Select USART does NOT drive SCK pin

OVER 0 Select 16X Oversampling (used in baud rate calculation)
INACK 0 Not applicable in “normal” mode — leave as zero
DSNACK 0 Not applicable in “normal” mode - leave as zero
MAX_ITERATION 0 Not applicable in “normal” mode - leave as zero

FILTER 0 Select USART does NOT filter the receive line

Based on the settings shown in the table above, we can set up the Mode register with the following C
language statement:

pUsart0->US MR = AT91C US PAR NONE |
0x3 << 6;

// no parity
// 8-bit characters

Interrupt Enable Register — Enable Desired USARTO Interrupt

While we are configuring the USARTO, it behooves us to not enable any possible UARTO interrupts.

30.7.3 USART Interrupt Enable Register

Name: US_IER

Access Type: Write-only
31 30 29 28 27 26 25 24

. - r - tr - r - r - r - [- [-]
23 22 21 20 19 18 17 16

| - | - | - | - | CTSsIC | DChIC | DSRIC | RIIC |
15 14 13 12 11 10 9 8

| - | - | MNACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEQOUT |
7 6 5 4 3 2 1 0

[PARE | FRAME | OVRE | ENDIX | ENDAX | HAXBRK | TXADY | FRXADY |

AT91SAM7 Serial Communications

20 Of 91

RXRDY: RXRDY Interrupt Enable

TXRDY: TXRDY Interrupt Enable

RXBRK: Receiver Break Interrupt Enable
ENDRX: End of Receive Transfer Interrupt Enable
ENDTX: End of Transmit Interrupt Enable

+ OVRE: Overrun Error Interrupt Enable

+ FRAME: Framing Error Interrupt Enable
+ PARE: Parity Error Interrupt Enable

+ TIMEOQUT: Time-out Interrupt Enable

+ TXEMPTY: TXEMPTY Interrupt Enable

+ |ITERATION: Iteration Interrupt Enable

+ TXBUFE: Buffer Empty Interrupt Enable
+ RXBUFF: Buffer Full Interrupt Enable

+ NACK: Non Acknowledge Interrupt Enable
+ RIIC: Ring Indicator Input Change Enable

+ DSRIC: Data Set Ready Input Change Enable
+ DCDIC: Data Carrier Detect Input Change Interrupt Enable
+ CTSIC: Clear to Send Input Change Interrupt Enable

The following C language statement will not select any of the USARTO interrupts for activation.

pUsart0->US_IER = 0x0000;

// no usart@ interrupts enabled (no effect)

Interrupt Disable Register — Disable Desired USARTO Interrupt

While we are configuring the USARTO, it also behooves us to temporarily disable all possible UARTO

interrupts

30.7.4 USART Interrupt Disable Register

Name: US_IDR

Access Type: Write-anly
3 30 29 28 27 26 25 24

. - r - r - r - r - 1 - [= [= |
23 22 21 20 19 18 17 16

| - | - | - | - | CTsIC | DChIC | DSRIC | RIC |
15 14 13 12 11 10 g)

| - | - | NACK | RXBUFF | TXBUFE | ITERATION | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| FARE | FRAME | OVRE | ENDTX | ENDRX | HXBRK | TXRDY | RXRDY |

AT91SAM7 Serial Communications

21 Of 91

-

RXRDY: RXRDY Interrupt Enable
TXRDY: TXRDY Interrupt Enable
RXBRK: Receiver Break Interrupt Enable

-

-

-

ENDRX: End of Receive Transfer Interrupt Enable
ENDTX: End of Transmit Interrupt Enable
OVRE: Qverrun Error Interrupt Enable

-

.

.

FRAME: Framing Error Interrupt Enable
PARE: Parity Error Interrupt Enable
TIMEOUT: Time-out Interrupt Enable
TXEMPTY: TXEMPTY Interrupt Enable
ITERATION: Iteration Interrupt Enable
TXBUFE: Buffer Empty Interrupt Enable
RXBUFF: Buffer Full Interrupt Enable
NACK: Non Acknowledge Interrupt Enable

.

.

.

.

.

.

.

.

RIIC: Ring Indicator Input Change Enable

DSRIC: Data Set Ready Input Change Enable

DCDIC: Data Carrier Detect Input Change Interrupt Enable
CTSIC: Clear to Send Input Change Interrupt Enable

.

.

.

The following C language statement will disable all of the USARTO interrupts.

pUsart0->US_IDR = OxFFFF; // all usart® interrupts disabled

Baud Rate Generator Register — enter baud rate clock divider

In the baud rate analysis given previously, we determined that the clock divider CD should be set to 313
(0x139) to achieve a 9600 baud rate.

30.7.9 USART Baud Rate Generator Register

Name: US_BRGR
Access Type: Read/Write
3 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
. - [- 1 - [T = T = 1] FP |
15 14 13 12 11 10 9 8
| cD |
7 5] 51 4 3 2 1]
| cb |
* CD: Clock Divider
USART MODE = ISO7816
USART_MODE =
cD SYNC =0 SYNC =1 1SO7816
OVER =0 OVER =1
o Baud Rate Clock Disabled
1 to 65535 Baud Rate = Baud Rate = Baud Rate = Baud Rate = Selected
Selected Clock16/CD | Selected Clock/8/CD Selected Clock /CD Clock/CD/FI_DI_RATIO

* FP: Fractional Part
0: Fractional divider is disabled.
1 - 7: Baudrate resolution, defined by FP x 1/8.

AT91SAM7 Serial Communications 22 Of 91

The following C language statement will set the baud rate clock divider to 0x139. In this baud rate setup,
the Fractional Divider is disabled.

PUSARTO0->US_BRGR = 0x139; // CD = 0x139 (313 from above calculation)
// FP=0 (not used)

Set Up the USARTO Registers that are not Used

Since we elected to run the USARTO in “normal” mode, there are four setup registers that are not
applicable. These registers are: Receiver Time-out Register, Transmitter Timeguard Register, Fl DI Ratio
register, and IrDA Filter Register. These registers can simply be set to zero.

PUSARTO0->US_RTOR = 0; // receiver time-out (disabled)
PUSARTO0->US_TTGR = O0; // transmitter timeguard (disabled)
PUSARTO0->US_FIDI = 0; // FI over DI Ratio Value (disabled)
PUSARTO0->US_IF = 0; // IrDA Filter value (disabled)

Note that the only USARTO register that is either read/write or write-only that | didn't access is the Transmit
Holding Register. This is not actually a “setup” register. Anytime you write to this register, the contents are
immediately dumped into the transmit shift register and the character starts clocking out (assuming that the
transmitter is enabled, of course).

AT91SAM7 Serial Communications 23 Of 91

Setting Up the Advanced Interrupt Controller (AIC)

The issue of interrupts in a AT91SAMY7 is fairly complex for a novice, so a detailed discussion of handling
interrupts may be helpful. As mentioned before, there are 32 possible interrupts in a Atmel AT91SAM7X256
chip as shown below.

Table 10-1. Peripheral Identifiers

Extemnal
Peripheral ID Perif p Mame Interrupt
0 AlC Advaneced Interrupt Controller FlQ
1 SYSCih System
2 PIOA Parallel 110 Controller A
3 PIOB Parallel 110 Controller B
4 SPI0 Serial Peripheral Interface 0
5 SPI1 Serial Peripheral Interface 1
6 uso USART 0 i - USARTO Interrupt
7 us1 USART 1
8 88C Synchronous Serial Controller
9 T™WI Two-wire Interface
10 PWMC Pulse Width Modulation Controller
" upp USE device Port
12 TCo Timer/Counter 0
13 TCH Timer/Counter 1
14 TCz Timer/Counter 2
15 CAN CAN Controller
18 EMAC Ethernet MAC
17 ADCHM Analog-to Digital Converter
18 AES Advanced Encryption Standard 128-bit
19 TDES Triple Data Encryption Standard
20-29 Reserved
30 AIC Advanced Interrupt Controller IRGO
31 AlC Advanced Interrupt Controller IRQ1

Keep in mind that the “system” interrupt (Peripheral ID = 1) above actually covers seven shared interrupts;
periodic interval timer PIT, real time timer RTT, watchdog timer WDT, debug-UART DBGU, power
management controller PMC, reset controller RSTC, and embedded flash controller EFC. If you enable one
or more of these system controller interrupts, then you will have to query within the IRQ handler the status
registers for each enabled “system” peripheral to determine exactly what happened. Fortunately, these will
not be used in our serial communications examples to follow.

The Atmel AT91SAM7X256 microcontroller has a Advanced Interrupt Controller (AIC) to assist in quickly
processing IRQ interrupts. The basic idea is that when you have an interrupt asserted, the AIC will quickly
supply you with the IRQ Interrupt Handler address to jump to. Common sense tells us that the AIC will
need to know the following things about any potential interrupt: address of the interrupt handler, its
priority, and if you want it edge-triggered or level-sensitive.

To specify the handler address, there are 32 AIC Source Vector Registers, one for each possible
interrupt. If the interrupt is unused, program it to a “default handler” address (usually a endless loop). This
is actually accomplished at the end of the lowlevelinit.c module in the project. In our example, we will be
programming the handler address UsartOlrqHandler() into AIC_SVR6. That will be the seventh SVR
register, assuming zero-base addressing of the array of AIC Source Vector Registers (AIC_SVR®6).

23.8.4 AIC Source Vector Register
Register Name: AlC_SVRo0..AIC_SVR31

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

| VECTOR |
23 22 21 20 19 18 17 16

| VECTOR |
15 14 13 12 11 10 9 8

| VECTOR |
7 5 5 4 3 2 1 0

[VECTOR |

+ VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.

AT91SAM7 Serial Communications 24 Of 91

There is also a companion set of 32 AIC Source Mode Registers that allow you to specify the priority and
the “level-sensitive” or edge-sensitive” trigger characteristic of any potential interrupts.

There are 8 priority levels available. “Why not 32 levels, you ask”? It is not discussed in the data sheet, but
| suspect that determination of the highest priority interrupt is a logic circuit that would get too complex for
32 priority levels. Normally, eight priority levels are more than sufficient, but if your design has a large
number of interrupts, then some interrupts may end up having the same priority. In that case, the interrupt
with the lowest source number is serviced first. From the data sheet diagram below, zero is the lowest
priority while seven is the highest priority.

23.8.3 AIC Source Mode Register
Register Name: AIC_SMRO..AIC_SMR31

Access Type: Read/Write

Reset Value: 0x0
31 30 29 28 27 26 25 24

[- I - | - | - I - | - | - I - |
23 22 21 20 19 18 17 16

[- I - | - | - I - | - | - I - |
15 14 13 12 11 10 9 8

[- I - | - | - I - | - | - I - |
7 6 5 4 3 2 1 0

| — | SRCTYPE | — | — | PRIOR |

+ PRIOR: Priority Level

Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 {lowest) and 7 (highest).

The priority level is not used for the FIQ in the related SMR register AIC_SMRx.

+ SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

When the AIC detects an interrupt and resolves the competing priorities, if any, it will copy the handler
address you programmed beforehand into the AIC Interrupt Vector Register (AIC_IVR). This is the “winner”,
so to speak.

23.8.5 AIC Interrupt Vector Register
Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0
31 30 29 28 27 26 25 24

| IRQV |
23 22 21 20 19 18 17 16

| IRQV |
15 14 13 12 11 10 9 8

| IRQV |
7 8 5 4 3 2 1 0

| IRQV |

+ |IRQV: Interrupt Vector Register

The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

AT91SAM7 Serial Communications 25 Of 91

We can, of course, individually enable and disable interrupts in the Advanced Interrupt Controller (AIC). To
enable any of the 32 interrupts, use the AIC Interrupt Enable Command Register shown below. Note that
Bit0 is for the FIQ interrupt, Bit1 is for the System interrupt - that's the one that shares seven peripherals.

23.8.11 AIC Interrupt Enable Command Register
Register Name: AIC_IECR

Access Type: Write-only
3 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | SYS | FIQ |

* FIQ, SYS, PID2-PID3: Interrupt Enable
0 = No effect.
1 = Enables corresponding interrupt.

Likewise, we can disable any interrupt in the AIC by using the AIC Interrupt Disable Command Register
shown below.

23.8.12 AIC Interrupt Disable Command Register
Register Name: AIC_IDCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PIDQ | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PID5 | PID4 | PID3 | PID2 | sYS | FIQ |

* FIQ, SYS, PID2-PID31: Interrupt Disable

0 = No effect.

1 = Disables corresponding interrupt.
You can clear any edge-triggered interrupt in the AIC by setting the appropriate bit in the AIC Interrupt Clear
Command Register (AIC_ICCR) as shown below. This is an extra step you will have to do for any “edge-
triggered” interrupts. For “level-sensitive” interrupts, such as our USARTO interrupt, this has no effect. For
level-sensitive interrupts, the interrupt in the AIC is automatically cleared when you read the AIC Interrupt
Vector Register (AIC_IVR). That operation is done in the assembly language part of interrupt handling.

23.8.13 AIC Interrupt Clear Command Register

Register Name: AIC_ICCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | pID22 | pID21 | pD20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | pD13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 Q

| PID7 | PID& | PID5 | PID4 | PID3 | PID2 | SYS | FIQ |

* FIQ, SYS, PID2-PID31: Interrupt Clear
0 = No effect.
1 = Clears corresponding interrupt.

AT91SAM7 Serial Communications 26 Of 91

You can “software trigger” any of the AIC interrupts by setting a bit in the AIC Interrupt Set Command
Register, shown below. It would be rare for someone to employ this, but the capability might be useful in
some software debugging situations. We won't be using this register in our examples.

23.8.14 AIC Interrupt Set Command Register

Register Name: AIC_ISCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| PID31 | PDa0 | PID29 | PID28 | PID27 | PID26 | PID25 | PID24 |
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 | PID16 |
15 14 13 12 11 10 9 8

| PID15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 | PID8 |
7 6 5 4 3 2 1 0

| PID7 | PID6 | PIDS | PID4 | PID3 | PID2 | SYS | FIQ |

« FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.
1 = Sets corresponding interrupt.

If there were multiple interrupts asserted simultaneously, you could look at them using the AIC Interrupt
Pending Register (AIC_IPR) shown below. In most cases, looking at this register is superfluous since the
whole purpose of the AIC is to feed you the handler address of every pending interrupt, one after another.

23.8.8 AIC Interrupt Pending Register
Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0
31 30 29 28 27 26 25 24

| PID31 | PID30 | PID29 | PID28 | PID27 | PID26 | PID25 PID24
23 22 21 20 19 18 17 16

| PID23 | PID22 | PID21 | PID20 | PID19 | PID18 | PID17 PID16
15 14 13 12 11 10] 8

| PD15 | PID14 | PID13 | PID12 | PID11 | PID10 | PID9 PID8
7 6 5 4 3 2 1 0

| PID7 | PID6 | PIDS | PID4 | PID3 | PID2 | SYS FIQ

« FIQ, SYS, PID2-PID31: Interrupt Pending
0 = Corresponding interrupt is not pending.
1 = Corresponding interrupt is pending.

The Atmel data sheet is very insistent that, at the end of your IRQ interrupt processing, you should signal
“End of Interrupt” by writing any value (such as zero) to the AIC End of Interrupt Command Register
shown below. Shortly you will see that this is done in the assembler language part of IRQ interrupt

handling.

23.8.15 AIC End of Interrupt Command Register

Register Name: AIC_EOQICR

Access Type: Wirite-only
31 30 29 28 27 26 25 24

1 -1 1 1 1 1 T 1]
23 20 21 20 19 18 17 16

I - | - | - | - I - I - I - | - |
15 14 13 12 11 10 9 8

I - | - | - | - I - I - I - | - |
7 6 5 4 3 2 1 0

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt

treatment.

AT91SAM7 Serial Communications

27 Of 91

Using the AIC setup registers just described above, we can properly set up the AIC for USARTO interrupts
by the following code snippet.

// Set up the Advanced Interrupt Controller (AIC) registers for USARTO

void Usart0IrgHandler(void); // function prototype for USARTO handler
volatile AT91PS_AIC pAIC = AT91C_BASE_AIC; // pointer to AIC data structure
pPAIC->AIC_IDCR = (1<<AT91C_ID USO); // Disable USARTO interrupt in AIC

pAIC->AIC_SVR[AT91C_ID USO] = (unsigned int)Usart0IrqHandler; // Set the USARTO IRQ handler address in AIC
// Source Vector Register[6]

pAIC->AIC_SMR[AT91C_ID_US@] =(AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | 0x4); // Set the int source type and pri
// in AIC Source Mode Register[6]

pPAIC->AIC_IECR = (1<<AT91C_ID USO); // Enable the USARTO interrupt in AIC

Final Preparations for USARTO Interrupt Processing

Just a few more lines of code are required to have everything ready for USARTO interrupts. First, we
enable both the receiver and transmitter. Since this application is half-duplex, so to speak, we will never
have the transmitter and receiver running at the same time. In some RS-485 2-wire applications, you could
run the risk of the receiver seeing everything that is being transmitted and thus interrupting on it. That is not
the case here, so we can leave both of them on at all times.

We will enable the USARTO receive interrupt since we will be waiting for received characters to come in.
We will also set up a pointer to the buffer and zero the number of characters (nChars) count. Remember
that we intend to count ten incoming characters before transmitting them all back to the source in a burst.

Finally, we enable global IRQ interrupts (these were turned off in the crt.s assembly language module).

// external global variables

extern char Buffer[]; // holds received characters
extern unsigned long nChars; // counts number of received chars
extern char *pBuffer; // pointer into Buffer

// enable the USARTO receiver and transmitter
PUSARTO->US_CR = AT91C_US_RXEN | AT91C_US_TXEN;

// enable the USARTO receive interrupt
PUSARTO->US_IER = AT91C_US_RXRDY; // enable RXRDY usart0 receive interrupt
PUSARTO->US_IDR = ~AT91C_US_RXRDY; // disable all other interrupts except RXRDY

// set up buffer pointer and character counter
pBuffer = &Buffer[0];
nChars = 0;

// enable IRQ interrupts
lenableIRQ();

// at this point, only the USARTO receive interrupt is armed!

AT91SAM7 Serial Communications 28 Of 91

Assembly Language Part of the IRQ Handler

The sample project, evolved from the samples in the tutorial “Using Open Source Tools for Atmel
AT91SAM7 Cross Development’, uses an assembler language start-up routine called “crt.s”. The IRQ
handler of this routine is extracted from an Atmel example; this assembly language snippet does two great
things: it supports “nested” interrupts and it allows us to develop our interrupt handlers as a pure C
language function. The vector table and IRQ hander are shown below.

USARTO interrupt executes this instruction! |

// Vector Table

| vec_reset: b _init_reset RESET vector - must be at 0x00000000 */
| vec_undef: b AT91F_Undef_Handler Undefined Instruction vector */

| vec_swi: b _vec_swi Software Interrupt vector */

| vec_pabt: b AT91F_Pabt_Handler /* Prefetch abort vector */

| vec_dabt: b AT91F_Dabt_Handler /* Data abort vector */

| vec_rsv: nop /* Reserved vector */

| vec_irq: b AT91F_Irq_Handler /* Interrupt Request (IRQ) vector */

| vec_fiq: b —vec_tiq /* Fast interrupt request (FIQ) vector */

|AT91F_I rg_Handler:

/* Manage Exception Entry */
/* Adjust and save LR_irq in IRQ stack */

sub ir, lr, #4
stmfd sp!, {lr}
/* Save r0@ and SPSR (need to be saved for nested interrupt) */
mrs rl4, SPSR
stmfd sp!, {ro,ri4}
i s Here the ISR code jumps to the
/* Write in the IVR to support Protect Mode */ .

/* No effect in Normal Mode */ address placed in the AIC Interrupt
/* De-assert the NIRQ and clear the source in Protect Mode */ Vector Register (the winner!). This
ldr rl4, =AT91C_BASE_AIC X .
1dr re , [rl4, FAIC IVR] will be the handler:

str rl4, [rl4, #AIC_IVR] UsartO]rqHand|er()
/* Enable Interrupt and Switch in Supervisor Mode */ o

msr CPSR_c, #ARM_MODE_SVC The beauty of this is that the handler
/* Save scratch/used registers and LR in User Stack */ eI b_e a normal C language

stmfd sp!, { rl-r3, ri2, ri4} function!
/* Branch to the routine pointed by the AIC_IVR */

mov rl4, pc

bx ro

/* Manage Exception Exit */ : . «
/* Restore scratch/used registers and LR from User Stack */ !_Iere IS WPere we signal “end Of.
ldmia sp!, { rl-r3, ri2, ri4} interrupt’ to the AIC. We can write

/* Disable Interrupt and switch back in IRQ mode */ anything to do thIS.; here we write the
msr CPSR_c, #I BIT | ARM_MODE_IRQ AIC base address itself to the

/* Mark the End of Interrupt on the AIC */ AIC—EOICR register.

ldr rl4, =AT91C_BASE_AIC

str rl4, [rl4, #AIC_EOICR]
/* Restore SPSR_irq and r0 from IRQ stack */

ldmia sp!, {r0,rl4}

msr SPSR_cxsf, rl4

/* Restore adjusted LR _irq from IRQ stack directly in the PC */
ldmia sp!, {pc}* All done!

AT91SAM7 Serial Communications 29 Of 91

Designing the USARTO0 IRQ Handler

The intention is to read 10 characters and after the 10" character has been received, transmit all ten
received characters back to the source. This just seemed a little more interesting than retransmitting every
incoming character as it comes in.

If there is a receive interrupt, we immediately copy the incoming character from the receive holding register
(US_RHR) to the buffer and advance the buffer pointer and nChars.

If we have received ten characters, we reset the buffer pointer to the start of the Buffer and clear nChars.
We enable the transmitter interrupt and disable the receiver interrupt and then send the first character in
the buffer by loading the transmit holding register (US_THR) and advancing the pointer and nChars count.
The first character in the buffer will now start clocking out and we will be interrupted next when the
TXEMPTY interrupt occurs.

Processing a Receive Interrupt (RXRDY)

// we have a receive interrupt,

// remove it from Receiver Holding Register and place into buffer[]
*pBuffer++ = pUsart0->US_RHR;

nChars++;

// check if 10 characters have been received
if (nChars >= 10) {

// yes, redirect buffer pointer to beginning
pBuffer = &Buffer[0];
nChars = 0;

// disable the receive interrupt, enable the transmit interrupt
pUsart0->US_IER AT91C_US_TXEMPTY; // enable TXEMPTY usart@ transmit interrupt
pUsart0->US_IDR ~AT91C_US_TXEMPTY; // disable all interrupts except TXEMPTY

// send first received character, TXEMPTY interrupt will send the rest
pUsart0->US_THR = *pBuffer++;
nChars++;

The transmit operation is very similar. We check if 10 characters has been already sent and, if so, set up
for reception. If less than 10 characters have been sent, we fetch the next character and place it into the
transmit holding register (US_THR) and advance the buffer pointer and character count.

// we have a transmit interrupt (previous char has clocked out)
// check if 10 characters have been transmitted
if (nChars >= 10) {

// yes, redirect buffer pointer to beginning
pBuffer = &Buffer[0];
nChars = 0;

// enable receive interrupt, disable the transmit interrupt
pUsart0->US_IER = AT91C_US_RXRDY; // enable RXRDY usart0 receive interrupt
pUsart0->US_IDR = ~AT91C_US_RXRDY; // disable all interrupts except RXRDY

} else {
// no, send next character

pUsart0->US_THR = *pBuffer++;
nChars++;

AT91SAM7 Serial Communications 30 Of 91

A flow chart of the USARTO IRQ Handler is shown below.
Flowchart — USARTO Interrupt Handler

USARTO Interrupt Entry

Receive Transmit
Interrupt TN ETE Interrupt
RXRDY ENDTX
Buffer[n] = US_RHR
increment memory pointer
increment nChars No Yes
US_THR = Buffer[n] Reset pointer to Buffer[0]
No !ncrement memory pointer nChars =0
increment nChars
Yes
Reset pointer to Buffer[0] Disable transmitter
interrupt
nChars =0
v Enable receiver
interrupt

Disable receiver interrupt

Enable transmitter interrupt

v

US_THR = Buffer[n]
increment memory pointer
increment nChars

(this starts 1% transmission)

v v v v

USARTO Interrupt Exit

AT91SAM7 Serial Communications

31 Of 91

Project Listings — Interrupt Version

AT91SAM7X256.H

This is a standard Atmel include file that can be found on their web site. This file includes data structures
and memory addresses for peripheral registers and other useful constants.

// DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
// DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,

// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
// OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// File Name
// Generated
//

#ifndef AT91SAM7X256_H
#idefine AT91SAM7X256_H

: AT91SAM7X256.h
// Object : AT91SAM7X256 definitions
: AT91 SW Application Group 01/16/2006 (16:36:21)

typedef volatile unsigned int AT91 REG;// Hardware register definition

v/ SOFTWARE API DEFINITION FOR System Peripherals

typedef struct _AT91S_SYS {
AT91 REG AIC_SMR[32];
AT91 REG AIC SVR[32];
AT91_REG AIC_IVR;
AT91_REG AIC FVR;
AT91 REG AIC_ISR;
AT91 REG AIC IPR;
AT91 REG AIC IMR;
AT91 REG AIC_CISR;
AT91_REG Reserved0[2];
AT91_REG AIC_IECR;
AT91 REG AIC_IDCR;
AT91 REG AIC_ICCR;
AT91_REG AIC_ISCR;
AT91_REG AIC_EOICR;
AT91 REG AIC SPU;
AT91 REG AIC DCR;
AT91 REG Reservedl[1];
AT91_REG AIC_FFER;
AT91 REG AIC_FFDR;
AT91 REG AIC FFSR;
AT91 REG Reserved2[45];
AT91_REG DBGU_CR;
AT91 REG DBGU_MR;
AT91 REG DBGU_IER;
AT9L REG DBGU_IDR;

This is a very long file!

//

//
//

Source Mode Register

Source Vector Register

IRQ Vector Register

FIQ Vector Register

Interrupt Status Register
Interrupt Pending Register
Interrupt Mask Register

Core Interrupt Status Register

Interrupt Enable Command Register
Interrupt Disable Command Register
Interrupt Clear Command Register
Interrupt Set Command Register

End of Interrupt Command Register
Spurious Vector Register

Debug Control Register (Protect)

Fast Forcing Enable Register
Fast Forcing Disable Register
Fast Forcing Status Register

Control Register

Mode Register

Interrupt Enable Register
Interrupt Disable Register

AT91SAM7 Serial Communications

32 Of 91

BOARD.H

It is traditional to have a “board support” include file which sets memory limits, etc. For this project, we only
use the LED definition.

// The software is delivered "AS IS" without warranty or condition of any
// kind, either express, implied or statutory. This includes without

// limitation any warranty or condition with respect to merchantability or
// fitness for any particular purpose, or against the infringements of

// intellectual property rights of others.

e e P e e L P e LS
// File Name: Board.h

// Object: AT91SAM7S Evaluation Board Features Definition File.

//

// Creation: JPP 16/June/2004

//
ifndef Board_h
efine Board_h

include "at91sam7x256.h"
efine _ inline inline

efine true 1
efine false 0

//
// The AT91SAM7S2564 embeds a 64-Kbyte SRAM bank, and 256 K-Byte Flash

efine INT_SRAM 0x00200000
efine INT_SRAM_REMAP 0x00000000
efine INT_FLASH 0x00000000
efine INT_FLASH_REMAP 0x01000000
efine FLASH PAGE_NB 1024
efine FLASH_PAGE_SIZE 256

//=====mmmemmeceeaeaaaae

// Leds Definition

//========mmmmemeccaaas

Iggefine LED4 (1<<3) // PA3 (pin 1 on EXT connector)
efine LED_MASK (LED4)

efine EXT_OC 18432000 // Exetrnal ocilator MAINCK
efine MCK 47923200 // MCK (PLLRC div by 2)
efine MCKKHz (MCK/1000) //

ndif // Board_h

CRT.S

The assembler language start-up routine is similar to the one in the tutorial “Using Open Source Tools for
Atmel AT91SAM7 Cross Development’. At completion, the start-up routine branches to main with the CPU
in “system” mode with the global interrupts off. The IRQ interrupt processing part, designed by Atmel,
Rousett, France supports nested interrupts and permits the rest of the IRQ handler to be just a simple C
function.

AT91SAM7 Serial Communications 33 Of 91

I N
Ve CRT.S */
/* 2
/* */
/* Assembly Language Startup Code for Atmel AT91SAM7X256 */
/* */
/* */
/* 2
/* */
/* Author: James P Lynch June 22, 2008 &
/* */

.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global
.global

.text
.arm
.align

/* identify all GLOBAL symbols

/* Stack Sizes */

.set UND_STACK_SIZE, 0x00000010
.set ABT_STACK SIZE, 0x00000010
.set FIQ _STACK SIZE, 0x00000080
.set IRQ_STACK SIZE, 0X00000080
.set SVC_STACK SIZE, 0x00000080

.set ARM_MODE_FIQ, ox11
.set ARM_MODE_IRQ, 0x12
.set ARM_MODE_SVC, 0x13
.set ARM_MODE_ABT, 0x17
.set ARM_MODE_UND, 0x1B
.set ARM_MODE_SYS, Ox1F
.set I_BIT, 0x80

.set F_BIT, 0x40

_vec_reset

_vec_undef

_vec_swi

_vec_pabt

_vec_dabt

_vec_rsv

_vec_irq

_vec_fiq
AT91F_Irq_Handler
AT91F_Fiq_Handler
AT91F_Default_FIQ_handler
AT91F_Default_IRQ_handler
AT91F_Spurious_handler
AT91F_Dabt_Handler
AT91F_Pabt_Handler
AT91F_Undef_Handler

/* GNU assembler controls */

/* Standard definitions of Mode bits and Interrupt
.set ARM_MODE_USR, 0x10

/*

*/

/*
/*

/* Addresses and offsets of AIC and PIO */
.set AT91C_BASE_AIC, O0xFFFFF000
.set AT91C_PIOA_CODR, OxFFFFF434
.set AT91C_AIC_IVR, OxFFFFF100
.set AT91C_AIC_FVR, OxFFFFF104
.set AIC_IVR, 256

.set AIC_FVR, 260

.set AIC_EOICR, 304

*/

stack for "undefined instruction" interrupts is 16 bytes */

stack for "abort" interrupts is 16 bytes */
stack for "FIQ" interrupts is 128 bytes */
stack for "IRQ" normal interrupts is 128 bytes */
stack for "SVC" supervisor mode is 128 bytes */

Normal User Mode

FIQ Processing Fast Interrupts Mode */

IRQ Processing Standard Interrupts Mode */
Supervisor Processing Software Interrupts Mode */
Abort Processing memory Faults Mode */

Undefined Processing Undefined Instructions Mode

System Running Priviledged Operating System Tasks Mode

when I bit is set, IRQ is disabled (program status registers) */
when F bit is set, FIQ is disabled (program status registers) */
(AIC) Base Address */
(PIO) Clear Output Data Register */
(AIC) IRQ Interrupt Vector Register */
(AIC) FIQ Interrupt Vector Register */
IRQ Vector Register offset from base above */
FIQ Vector Register offset from base above */
End of Interrupt Command Register &4

/* all assembler code that follows will go into .text section
/* compile for 32-bit ARM instruction set */
* align section on 32-bit boundary */

AT91SAM7 Serial Communications

(I & F) flags in PSRs (program status registers)

*/

*/

*/

*/

34 Of 91

/* */

e VECTOR TABLE */

/* */

/* Must be located in FLASH at address 0x00000000 */

e */

/* Easy to do if this file crt.s is first in the list */

e for the linker step in the makefile, e.g. */

/* */

/* $(LD) $(LFLAGS) -o main.out crt.o main.o */

/* */

/* */

_vec_reset: b _init_reset /* RESET vector - must be at 0x00000000 */
_vec_undef: b AT91F_Undef_Handler /* Undefined Instruction vector */
_vec_swi: b _vec_swi /* Software Interrupt vector (endless loop) */
_vec_pabt: b AT91F_Pabt_Handler /* Prefetch abort vector */

_vec_dabt: b AT91F_Dabt_Handler /* Data abort vector */

_vec_rsv: nop /* Reserved vector */

_vec_irq: b AT91F_Irq_Handler /* Interrupt Request (IRQ) vector */
_vec_fiq: b _vec_fiq /* Fast interrupt request (FIQ) vector (endless loop)
e */

/* _init_reset Handler */

/* %/

e RESET vector 0x00000000 branches to here. */

/*)

e ARM microprocessor begins execution after RESET at address 0x00000000 */

/* in Supervisor mode with interrupts disabled! */

/* %/

/* _init_reset handler: creates a stack for each ARM mode. */

5 sets up a stack pointer for each ARM mode. */

/* turns off interrupts in each mode. */

/* leaves CPU in SYS (System) mode. */

/* */

/* block copies the initializers to .data section */

/* clears the .bss section to zero */

/* */

/* branches to main() */

/* Y
.text /* all assembler code that follows will go into .text section */
.align /* align section on 32-bit boundary */

_init_reset:

/* Setup a stack for each mode with interrupts initially disabled. */
ro, = stack_end

dr

msr
mov
sub

msr
mov
sub

msr
mov
sub

msr
mov
sub

msr
mov
sub

msr
mov

CPSR_c,
sp, ro
ro, ro,

CPSR_c,
sp, ro@
ro, ro,

CPSR_c,
sp, ro
re, ro,

CPSR_c,
sp, ro
ré, ro,

CPSR_c,
sp, ro
ro, ro,

CPSR_c,
sp, ro

#ARM_MODE_UND|I_BIT|F_BIT
#UND_STACK_SIZE
#ARM_MODE_ABT |I_BIT|F_BIT
#ABT_STACK_SIZE
#ARM_MODE_FIQ|I_BIT|F_BIT
#FIQ_STACK_SIZE
#ARM_MODE_IRQ|I_BIT|F_BIT
#IRQ_STACK_SIZE
#ARM_MODE_SVC|I_BIT|F_BIT
#SVC_STACK_SIZE

#ARM_MODE_SYS|I_BIT|F_BIT

AT91SAM7 Serial Communications

/*
/*
/*

/*
/*
/*

/*
/*
/*

/*
/*
/*

/*

/*
/*

switch to
set stack
adjust ro

switch to
set stack
adjust ro

switch to
set stack
adjust ro

switch to
set stack
adjust ro

switch to
set stack
adjust ro

switch to
set stack

we now start execution in

/* r@ = top-of-stack

Undefined Instruction Mode
pointer for UND mode */
past UND stack */

Abort Mode */
pointer for ABT mode */
past ABT stack */

FIQ Mode */
pointer for FIQ mode */
past FIQ stack */

IRQ Mode */
pointer for IRQ mode */
past IRQ stack */

Supervisor Mode */
pointer for SVC mode */
past SVC stack */

System Mode */

pointer for SYS mode */

*/

SYSTEM mode */

*/

*/

This is exactly like USER mode (same stack) */

but SYSTEM mode has more privileges */

35 Of 91

/* copy initialized variables .data section (Copy from ROM to RAM) */

ldr R1, = etext

dr R2, =_data

ldr R3, =_edata
1: cmp R2, R3

ldrlo RO, [R1], #4
strlo RO, [R2], #4

blo 1b
/* Clear uninitialized variables .bss section (Zero init) */

mov RO, #0

ldr R1l, =_bss_start

ldr R2, =_bss_end
2: cmp R1, R2

strlo RO, [R1], #4

blo 2b
/* Enter the C code */

b main
/* &/
/* Function: AT91F_Irq_Handler */
e */
/* This IRQ_Handler supports nested interrupts (an IRQ interrupt can itself */
/* be interrupted). */
/* */
/* This handler re-enables interrupts and switches to "Supervisor" mode to */
/* prevent any corruption to the link and IP registers. */
/* */
/* The Interrupt Vector Register (AIC_IVR) is read to determine the address */
/* of the required interrupt service routine. The ISR routine can be a */
/* standard C function since this handler minds all the save/restore */
/* protocols. Y
/* */
/* =Y
/* Programmers: */
/* __ */
/* ATMEL Microcontroller Software Support - ROUSSET - =]
/* .. */
/* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS */
/* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR)
/* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR */

/* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT &
/* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR &
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, */
/* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE */

/* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, &
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
/* File source : Cstartup.s79 &
/* Object : Generic CStartup to AT91SAM7S256 &
/* 1.0 09/May/06 JPP : Creation */
e */
/* */
/* Note: taken from Atmel web site (www.at91.com) */
/* Keil example project: AT91SAM7S-Interrupt_SAM7X */
/* */

AT91F_Irq_Handler:

/* Manage Exception Entry */

/* Adjust and save LR_irq in IRQ stack */
sub 1ir, 1r, #4
stmfd sp!, {lr}

/* Save r@ and SPSR (need to be saved for nested interrupt) */
mrs rl4, SPSR
stmfd sp!, {ro,rl4}

/* Write in the IVR to support Protect Mode */
/* No effect in Normal Mode */
/* De-assert the NIRQ and clear the source in Protect Mode */

ldr rl4, =AT91C_BASE_AIC
ldr ro , [rl4, #AIC_IVR]
str ri4, [rl14, #AIC_IVR]

AT91SAM7 Serial Communications 36 Of 91

/*

/*

/*

/*

/*

/*

/*

/*

/*

AT91F_Default_FIQ_handler: b
AT91F_Default_IRQ_handler: b

AT91F_Spurious_handler: b

Enable Interrupt and Switch in Supervisor Mode */
msr CPSR_c, #ARM_MODE_SVC

Save scratch/used registers and LR in User Stack */
stmfd sp!, { r1-r3, ri2, ril4}

Branch to the routine pointed by the AIC_IVR */
mov rl4, pc
bx ro

Manage Exception Exit */
Restore scratch/used registers and LR from User Stack */
ldmia sp!, { r1-r3, rl12, ri4}

Disable Interrupt and switch back in IRQ mode */

msr CPSR_c, #I_BIT | ARM_MODE_IRQ
Mark the End of Interrupt on the AIC */

ldr rl4, =AT91C_BASE_AIC

str rl4, [rl4, #AIC_EOICR]

Restore SPSR_irq and r@ from IRQ stack */
ldmia sp!, {ro,rl4}
msr SPSR_cxsf, rl4

Restore adjusted LR_irq from IRQ stack directly in the PC
ldmia sp!, {pc}*

*/

Function: AT91F_Dabt_Handler

Entered on Data Abort exception.

AT91F_Dabt_Handler: b AT91F_Dabt_Handler

Function: AT91F_Pabt_Handler

Entered on Prefetch Abort exception.

AT91F_Pabt_Handler: b AT91F_Pabt_Handler

Function: AT91F_Undef_Handler

Entered on Undefined Instruction exception.

AT91F_Undef_Handler: b AT91F_Undef_Handler

.end

AT91SAM7 Serial Communications

AT91F_Default_FIQ_handler
AT91F_Default_IRQ_handler

AT91F_Spurious_handler

37 Of 91

ISRSUPPORT.C

This module, written by Bill Knight, provides the ability for a C function to turn the global interrupts on and
off.

//

// File Name : isrsupport.c

// Title : interrupt enable/disable functions
//

// This module provides the interface routines for setting up and

// controlling the various interrupt modes present on the ARM processor.

// Copyright 2004, R 0 SoftWare

// No guarantees, warrantees, or promises, implied or otherwise.

// May be used for hobby or commercial purposes provided copyright notice remains intact.

// Note from Jim Lynch:
// This module was developed by Bill Knight, RO Software and used with his permission.
// Taken from the Yahoo LPC2000 User's Group - Files Section 'UT050418A.ZIP'

#define IRQ_MASK 0x00000080
#define FIQ_MASK 0x00000040
#define INT_MASK (IRQ_MASK | FIQ_MASK)

static inline unsigned _ get_cpsr(void) {
unsigned long retval;
asm volatile (" mrs %0, cpsr" : "=r" (retval) : /* no inputs */);
return retval;

static inline void __set_cpsr(unsigned val) {
asm volatile (" msr cpsr, %0" : /* no outputs */ : "r" (val));

}

unsigned disableIRQ(void) {
unsigned _cpsr;
_cpsr = __get_cpsr();
_ set_cpsr(_cpsr | IRQ_MASK);
return _cpsr;

}

unsigned restoreIRQ(unsigned oldCPSR) {
unsigned _cpsr;

_cpsr = __get_cpsr();
_ set_cpsr((_cpsr & ~IRQ_MASK) | (oldCPSR & IRQ_MASK));
return _cpsr;
}
unsigned enableIRQ(void) {
unsigned _cpsr;

_cpsr = __get_cpsr();
_ set_cpsr(_cpsr & ~IRQ_MASK);
return _cpsr;

unsigned disableFIQ(void) {
unsigned _cpsr;

_cpsr = __get_cpsr();
__set_cpsr(_cpsr | FIQ_MASK);
return _cpsr;

}

unsigned restoreFIQ(unsigned oldCPSR) {
unsigned _cpsr;

_cpsr = __get_cpsr();
_ set_cpsr((_cpsr & ~FIQ_MASK) | (oldCPSR & FIQ_MASK));
return _cpsr;
}
unsigned enableFIQ(void) {
unsigned _cpsr;

_cpsr = __get_cpsr();
_ set_cpsr(_cpsr & ~FIQ_MASK);
return _cpsr;

AT91SAM7 Serial Communications 38 Of 91

Lowlevelinit.c

When the Atmel AT91SAM7256 boots up, the CPU starts running with a simple 32 Khz RC oscillator — not
very fast. This module, adapted from Atmel examples, sets up the phased lock loop circuits to use the
crystal oscillator (18.432 Mhz) and multiply it to =48 Mhz.

// *kkk k%
// lowlevelinit.c

//

// Basic hardware initialization

//

// SLCK = 42000 hz (worst case) 32768 hz is the nominal slow clock frequency

// SLCK_PERIOD = 1 / 42000 = 23.8 usec

//

// MAINCK = 18432000 hz crystal on Olimex SAM7-EX256 board)

// PLLCK = (MAINCK / DIV) * (MUL + 1) = 18432000/14 * (72 + 1)

// PLLCLK = 1316571 * 73 = 96109683 hz

// MCK = PLLCLK / 2 = 96109683 / 2 = 48054841 hz

//

// Note: see page 5 - 6 of Atmel's "Getting Started with AT91SAM7X Microcontrollers" for details.

//

// Author: James P Lynch June 22, 2008

// kK k%

// include files
#include "at91lsam7x256.h"
#include "Board.h"

// external references

extern void AT91F Spurious_handler(void);
extern void AT91F_Default_IRQ_handler(void);
extern void AT91F Default_FIQ_handler(void);

void LowLevelInit(void)

int i;
AT91PS_PMC pPMC = AT91C_BASE_PMC;

// Set Flash Wait state

//

// Note: MCK period = 1 / 48054841 hz = 20.0809 nsec

// FMCN = number of Master clock cycles in 1 microsecond = 1.0 usec/ 20.08095 nsec = 50 (rounded up)
//

// FWS = flash wait states = 1 for 48 Mhz operation (FWS = 1)

// note: see page 656 of AT91SAM7XC512/256/128 Preliminary User Guide

//

// result: OXFFFFFF60 = 0x003001060 (AT91C_BASE_MC->MC_FMR = MC Flash Mode Register)
AT91C_BASE_MC->MC_FMR = ((AT91C_MC_FMCN)&(50 <<16)) | AT91C_MC_FWS_1FWS;

// Watchdog Disable

//

// result: OxFFFFFD44 = 0x00008000 (AT91C_BASE_WDTC->WDTC_WDMR = Watchdog Mode Register)
AT91C_BASE_WDTC->WDTC_WDMR = AT91C_WDTC_WDDIS;

// Enable the Main Oscillator

//

// Give the Main Oscillator 1.5 msec to start up

// Main oscillator startup time = SlowCockPeriod * 8 * OSCOUNT

// SlowClockPeriod = 1 / 42000 = .0000238 sec (worst case RC clock)

// OSCOUNT = 8

// MOS startup time = 23.8 usec * 8 * OSCOUNT = .0000238 * 8 * 8 = 1.5 msec
//

// MOSCEN = 1 (enables main oscillator)

//

// result: OxFFFFFC20 = 0x00000801 (pPMC->PMC_MOR = Main Oscillator Register)
pPMC->PMC_MOR = ((AT91C_CKGR_OSCOUNT & (0x08 <<8) | AT91C_CKGR_MOSCEN));

// Wait the startup time (until PMC Status register MOSCEN bit is set)
// result: OXFFFFFC68 bit 0 will set when main oscillator has stabilized
while(! (pPMC->PMC_SR & AT91C_PMC_MOSCS)) ;

AT91SAM7 Serial Communications 39 Of 91

// PMC Clock Generator PLL Register setup

//

// The following settings are used: DIV = 14

// MUL = 72

// PLLCOUNT = 10
//

// Main Clock (MAINCK from crystal oscillator) = 18432000 hz (see AT91SAM7-EK schematic)
// Note: input freq to PLL must be 1 Mhz to 32 Mhz so 18.432 Mhz is 0K

// MAINCK / DIV = 18432000/14 = 1316571 hz
// PLLCK = 1316571 * (MUL + 1) = 1316571 * (72 + 1) = 1316571 * 73 = 96109683 hz

// PLLCOUNT = number of slow clock cycles before the LOCK bit is set in PMC_SR after CKGR_PLLR is written.

// PLLCOUNT

10
// OUT = 0 (sets allowable range of PLL output freq from 80 Mhz to 160 Mhz ---> 96.109683 Mhz is OK)

// result: OxFFFFFC2C = 0x0000000048200E (pPMC->PMC_PLLR = PLL Register)
pPMC->PMC_PLLR = ((AT91C_CKGR_OUT_0) |

(AT91C_CKGR_DIV & 14)

(AT91C_CKGR_PLLCOUNT & (40<<10)) |

(AT91C_CKGR_MUL & (72<<16)));

// Wait the startup time (until PMC Status register LOCK bit is set)

// result: OXFFFFFC68 bit 2 will set when PLL has locked
while(! (pPMC->PMC_SR & AT91C_PMC_LOCK));

// PMC Master Clock (MCK) Register setup

//

// €SS = 3 (PLLCK clock selected)

//

// PRES =1 (MCK = PLLCK / 2) = 96109683/2 = 48054841 hz
//

// Note: Master Clock MCK = 48054841 hz (this is the CPU clock speed)
// result: OxFFFFFC30 = 0x00000004 (pPMC->PMC_MCKR = Master Clock Register)
pPMC->PMC_MCKR = AT91C_PMC_PRES_CLK 2;

// Wait the startup time (until PMC Status register MCKRDY bit is set)
// result: OXFFFFFC68 bit 3 will set when Master Clock has stabilized
while(! (pPMC->PMC_SR & AT91C_PMC_MCKRDY)) ;

// result: OxFFFFFC30 = 0x00000007 (pPMC->PMC_MCKR = Master Clock Register)
pPMC->PMC_MCKR |= AT91C_PMC_CSS_PLL_CLK;

// Wait the startup time (until PMC Status register MCKRDY bit is set)
// result: OxFFFFFC68 bit 3 will set when Master Clock has stabilized
while (! (pPMC->PMC_SR & AT91C_PMC_MCKRDY));

// Set up the default interrupts handler vectors
AT91C_BASE_AIC->AIC_SVR[0] = (int) AT91F_Default_FIQ_handler;
for (i=1;i < 31; i++) {

AT91C_BASE_AIC->AIC_SVR[i] = (int) AT91F_Default_IRQ_handler;

}

AT91SAM7 Serial Communications 40 Of 91

Main.c
This very simple main program sets up pin PA3 to drive a LED to act as a background activity indicator.

It also sets up the USARTO for interrupt-driven operations and enables global interrupts so that the
appearance of a incoming serial character will cause a USARTO interrupt.

The main program then falls into an endless idle loop blinking the LED.

// skokk ok sk ok 5k 5k ok ok sk ok 3k 5k ok ok

// main.c

//

// Interrupt-driven USARTO demonstration program for Olimex SAM7-EX256 Evaluation Board
//

// This simple demo reads 10 characters from USARTO (9600 baud, 8 data bits, 1 stop bit, no parity)
// When 10 characters are read, they are transmitted back to the source.

//

// Use standard RS-232 serial cable and the Windows HyperTerm program to test.

//

// Blinks LED (pin PA3) with an endless loop

// PA3 is pin 1 on the EXT 20-pin connector (3.3v is pin 18)

//

// The Olimex SAM7-EX256 board has no programmable LEDs.

// Added a simple test LED from Radio Shack as shown below (can be attached to the 20-pin EXT connector.)
//

// 3.3 volts [=-====-=-- | anode |----| PA3

// EXT 0------ | 470 ohm [-=------ncmmmnnnan |LED |-==-nnccannna- 0 EXT

// Pin 18 |====nmn-- | |----| cathode pin 1

// Radio Shack Red LED

// 276-026 T-1 size (anode is the longer wire)
//

// LED current: I = E/R = 3.3/470 = .007 amps = 7 ma

// Note: most PIO pins can drive 8 ma on the AT91SAM7X256, so we're OK
//

//

//

// Author: James P Lynch June 22, 2008

//
// Header Files
//
#include "AT91SAM7X256.h"
#include "board.h"

//
// External References
// ok ok >k >k sk ok k-
extern void LowLevelInit(void);
extern void USARTOSetup(void);

extern unsigned enableIRQ(void);

int main (void) {

unsigned long i

unsigned int IdleCount = 0;

// Initialize the Atmel AT91SAM7S256 (watchdog, PLL clock, default interrupts, etc.)

LowLevelInit();

// Set up the LED (PA3)

volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO data structure

pPIO->PI0_PER = LED_MASK; // PI0O Enable Register - allow PIO to control pin PP3
pPIO->PIO_OER = LED_MASK; // PIO Output Enable Register - sets pin P3 to outputs
pPIO->PIO_SODR = LED_MASK; // PIO Set Output Data Register - turns off the LED

// set up USARTO
USARTOSetup();

// enable global interrupts
enableIRQ();

AT91SAM7 Serial Communications 41 Of 91

J] FEEk
// * endless blink loop et
// kK kk
while (1) {
if ((pPIO->PIO_ODSR & LED4) == LED4) // read previous state of LED4
pPI0->PIO0_CODR = LED4; // turn LED4 (DS1) on
else
pPIO->PI0O_SODR = LED4; // turn LED4 (DS1) off
for (j = 1000000; j !'= 0; j--); // wait 1 second 1000000
IdleCount++; // count # of times through the idle loop
}
}

Usart0 _isr.c

This C language interrupt handler is called by the IRQ handler in the startup routine “crt.s”. It reads
incoming characters and saves them in a common buffer. When ten characters have been received, the
handler switches to “transmit” mode and sends the collected ten characters back to the source.

When that sequence finishes, the handler sets itself up for “receive” mode and waits for the next incoming
character to appear. Receive ten characters, transmit same ten characters — it does that forever.

//

// usart0_isr.c

//

// USARTO Interrupt Service Routine

//

// This demonstration is designed to read 10 characters into a buffer.
// After the 10th character arrives, transmit the 10 characters back.
//

// The application is interrupt-driven.

//

// Author: James P Lynch June 22, 2008

//

//

// Header Files

// skokk ok skokk ok

#include "at91lsam7x256.h"
#include "board.h"

//

// Global Variables

//

char Buffer([32]; // holds received characters
unsigned long nChars = 0; // counts number of received chars
char *pBuffer = &Buffer[0]; // pointer into Buffer

void Usart@IrgHandler (void) {
volatile AT91PS_USART pUsart® = AT91C_BASE_USO; // create a pointer to USARTO structure

// determine which interrupt has occurred
// assume half-duplex operation here, only one interrupt type at a time
if ((pUsart0->US_CSR & AT91C_US_RXRDY) == AT91C_US_RXRDY) {

// we have a receive interrupt,

// remove it from Receiver Holding Register and place into buffer[]
*pBuffer++ = pUsart0->US_RHR;

nChars++;

// check if 10 characters have been received

if (nChars >= 10) {

// yes, redirect buffer pointer to beginning
pBuffer = &Buffer[0];
nChars = 0;

// disable the receive interrupt, enable the transmit interrupt
pUsart0->US_IER = AT91C_US_TXEMPTY; // enable TXEMPTY usart0 transmit interrupt
pUsart0->US_IDR = ~AT91C_US_TXEMPTY; // disable all interrupts except TXEMPTY

// send first received character, TXEMPTY interrupt will send the rest
pUsart0->US_THR = *pBuffer++;
nChars++;

}
} else if ((pUsart0->US_CSR & AT91C_US_TXEMPTY) == AT91C_US_TXEMPTY) {
// we have a transmit interrupt (previous char has clocked out)
// check if 10 characters have been transmitted
if (nChars >= 10) {
// yes, redirect buffer pointer to beginning
pBuffer = &Buffer[0];
nChars = 0;

// enable receive interrupt, disable the transmit interrupt

pUsart0->US_IER = AT91C_US_RXRDY; // enable RXRDY usart@ receive interrupt
pUsart0->US_IDR = ~AT91C_US_RXRDY; // disable all interrupts except RXRDY
} else {
// no, send next character
pUsart0->US_THR = *pBuffer++;
nChars++;
}

Usart0_Setup.c

This initialization module sets up the USARTO for interrupt operation and sets up the AIC to process a
USARTO interrupt.

// k%
// usart0_setup.c

//

// Purpose: Set up USARTO (peripheral ID = 6) 9600 baud, 8 data bits, 1 stop bit, no parity
//

// We will use the onboard baud rate generator to specify 9600 baud

//

// The Olimex SAM7-EX256 board has a 18,432,000 hz crystal oscillator.

//

// MAINCK = 18432000 hz (from Olimex schematic)

// DIV = 14 (set up in lowlevelinit.c)

// MUL = 72 (set up in lowlevelinit.c)

//

// PLLCK = (MAINCK / DIV) * (MUL + 1) = 18432000/14 * (72 + 1)

// PLLCLK = 1316571 * 73 = 96109683 hz

// MCK = PLLCLK / 2 = 96109683 / 2 = 48054841 hz

//

// Baud Rate (asynchronous mode) = MCK / (8(2 - OVER)CD)

//

// MCK = 48054841 hz (set USCLKS = 00 in USART Mode Register US_MR - to select MCK only)
// VER =0 (bit 19 of the USART Mode Register US_MR)

// cD = divisor (USART Baud Rate Generator Register US_BRGR)

// baudrate = 9600 (desired)

//

AT91SAM7 Serial Communications 43 Of 91

48054841 48054841
a little algebra: BaudRate = -------------- = ememmameaa-
(8(2 - 0)CD) 16(CD)

48054841 48054841

€D = ---------- = mmmmeeee-- = 312.857037
9600(16) 153600

CD = 313 (round up)

48054841 48054841
check the actual baud rate: BaudRate = --------------- = memmmmmmeees = 9595.6

what's the error: Error = 1 - --------mmmemmmam- = 1 - --------- = 1 - 1.00045854 = -.0004585

// Author:

actual baudrate 9595.6 (not much)

James P Lynch June 22, 2008

kK ok ok

ko kk

Header Files

#include "at9lsam7x256.h"
#include "board.h"

//
//

External Globals

//
extern
extern
extern

char Buffer[]; // holds received characters
unsigned long nChars; // counts number of received chars
char *pBuffer; // pointer into Buffer

Function Prototypes

void Usart@IrgHandler(void);

void

USARTOSetup(void) {

// enable the usart0 peripheral clock
volatile AT91PS_PMC pPMC = AT91C_BASE_PMC; // pointer to PMC data structure
pPMC->PMC_PCER = (1<<AT91C_ID USO); // enable usart0 peripheral clock

// set up PIO to enable USARTO peripheral control of pins
volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO data structure
pPI0->PI0O_PDR = AT91C_PAO_RXDO | AT91C_PAl_TXDO; // enable peripheral control of PA®,PA1l (RXD@ and TXDO)

pPI0->PI0_ASR
pPI0->PI0_BSR

AT91C_PIO_PAO | AT91C_PIO_PAl; // assigns the 2 I/0 lines to peripheral A function
0; // peripheral B function set to "no effect"

// set up the USARTO registers
volatile AT91PS_USART pUSARTO = AT91C_BASE_USO; // create a pointer to USARTO structure

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

USARTO Control Register US_CR (read/write)

I I I I |
| RTSDIS RTSEN DTRDIS DTREN |

[--eeeee |--meeee FESCERES R |--eeee |--eeeee |--eeeee |--enenes |
23 22 21 20 19 18 17 16

| RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA |

[--mmeeee ESEENRS RRETEEE |-emmeees |-nmmeees |-nmmeees |--mmeeee |-mmmeees |
15 14 13 12 11 10 9 8

[-oeesees |-zoeeee |-oeese |-oseen |-onsee |-ossoen |-meeeee [-meeeee |
| TXDIS TXEN RXDIS RXEN RSTTX RSTRX - - |
|

AT91SAM7 Serial Communications 44 Of 91

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

RSTRX
RSTTX
RXEN = 0
RXDIS = 1
TXEN = 0
TXDIS = 1
RSTSTA
STTBRK
STPBRK
STTTO
SENDA
RSTIT
RSTNAC
RETTO
DTREN

1
1

nmnn
coo0o

nmuxmnnmn

(reset receiver)

(reset transmitter)

(receiver enable - no effect)
(receiver disable - disabled)
(transmitter enable - no effect)
(transmitter disable - disabled)
(reset status bits - no effect)

(start break - no effect)

(stop break - no effect)
(start time-out - no effect)

(send address - no effect)

(reet iterations - no effect)
(reset non acknowledge - no effect)
(rearm time-out - no effect)

(data terminal ready enable - no effect)
(data terminal ready disable - no effect)

(request to send enable - no effect)
(request to send disable - no effect)

PUSARTO->US_CR = AT91C_US_RSTRX |

AT91C_US_RSTTX
AT91C_US_RXDIS
AT91C_US_TXDIS;

// reset receiver

// reset transmitter
// disable receiver

// disable transmitter

USARTO Mode Register US_MR

I I
FILTER

28

INACK

20

(read/write)

27

OVER

19

MAX_ITERATION

26
CLKO MODE9
18 17
PAR
9
USART_MODE

choose MCK for baud rate generator

normal mode, no loop-back, etc.
LSB sent/received first
CHRL defines character length

USART does not drive SCK pin

16 x oversampling (see baud rate equation)

not used since NACK is not generated

|

31 29

| DSNACK

|--on-e-- |---s-e--

23 22 21
| CHMODE NBSTOP
|

15 14 13

I CHRL usc

7 6 5
USART_MODE = 0000 normal
USCLKS = 00
CHRL = 11 8-bit characters
SYNC = 0 asynchronous mode
PAR = 100 no parity
NBSTOP = 00 1 stop bit
CHMODE = 00
MSBF = 0
MODE9 = 0
CLKO = 0
OVER = 0
INACK = 0 NACK (not used)
DSNACK = 0
MAX_ITERATION = 0 max iterations not used
FILTER = 0 filter is off

PUSARTO->US_MR = AT91C_US_PAR_NONE |

0x3 << 6;

AT91SAM7 Serial Communications

// no parity

// 8-bit characters

24

MSBF

16

45 Of 91

//

pUSARTO->US_IER = 0x00;

PUSARTO->US_IDR = OXFFFF;

USARTO Interrupt Enable

19

CTSIC

Register US_IER

18

DCDIC

17

DSRIC

(write only)

16

RIIC

31 30 29 28
|

23 22 21 20
| NACK

15 14 13 12
| PARE FRAME OVRE

7 6 5 4

USARTO Interrupt Disable Register US_IDR

RXBUFF

11

TXBUFE ITERATIO TXEMPTY TIMEOUT
|--eeeme |--eeeee |--meeee |--eneee |--mese RS |---eee |--eeee

[
CTSIC

19

10

18

// no usart0 interrupts enabled

I
DCDIC

17

DSRIC

(write only)

(no effect)

I
RIIC

16

31 30 29 28
|

23 22 21 20
| NACK

15 14 13 12
| PARE FRAME OVRE

7 6 5 4

RXBUFF

11

TXBUFE ITERATIO TXEMPTY TIMEOUT
| -nmmeees |-mmmeees FRREREEE |-mmmeee |-emmeees JREBEEE REREEEEE |--mmeees

10

USARTO Interrupt Mask Register US_IDR

19

CTSIC

18

(write only)

DCDIC

17

// disable all USARTO interrupts

DSRIC

16

RIIC

RXBUFF

TXBUFE ITERATIO TXEMPTY TIMEOUT

31 30 29 28
|

23 22 21 20
| NACK

15 14 13 12
| PARE FRAME OVRE

7 6 5 4

read only, nothing to set up here

11

10

AT91SAM7 Serial Communications

46 Of 91

// USARTO Receive Holding Register US_RHR (read only)

// this is where any incoming character will be

// USARTO Transmit Holding Register US_THR (write only)

// this is where we place characters to be transmitted

// USARTO Baud Rate Generator Register US_BRGR (read/write)

PUSARTO->US_BRGR = 0x139; // CD = 0x139 (313 from above calculation) FP=0 (not used)

AT91SAM7 Serial Communications 47 Of 91

// USARTO Receiver Time-out Register US_RTOR (read/write)

pUSARTO->US_RTOR = 0; // receiver time-out (disabled)

// USARTO transmitter TimeGuard Register US_TTGR (read/write)

/1 [ERREEREE ERRRREEE ERRRREES EERRRRRE ERRPEEEE |-eemnees |--mmnee |-onmeees |
/1 ERRTEEEE |-eemaeee |-eesane |-eonnees |-ooonee |-eoneees |-onnnees EERISEEE |

pUSARTO->US_TTGR = 0; // transmitter timeguard (disabled)

// USARTO FI DI RatioRegister US_FIDI (read/write)

/1 EREEEEE ERRPREE EERRE |-eemnee |-onmnee |-eemnees |-onmnee ERREEEE |
/1 [ERRPEEE EERPIEE |-eeonee |-eennee |--ennne |-eemsee |-omenee ERRPIEEE |

// not used, nothing to set up here

AT91SAM7 Serial Communications 48 Of 91

// USARTO Number of Errors Register US_NER (read only)

// Read-only, nothing to set up here

// USARTO IrDA Filter Register US_IF (read/write)

// not used, nothing to set up here

// Set up the Advanced Interrupt Controller (AIC) registers for USARTO

volatile AT91PS_AIC pAIC = AT91C_BASE_AIC; // pointer to AIC data structure

pAIC->AIC_IDCR = (1<<AT91C_ID_USO); // Disable USARTO interrupt in AIC

pAIC->AIC_SVR[AT91C_ID_USO] = // Set the USARTO IRQ handler address in AIC Source
(unsigned int)Usart0IrqHandler; // Vector Register[6]

pAIC->AIC_SMR[AT91C_ID USO] = // Set the interrupt source type(level-sensitive) and

(AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | 0x4); // priority (4) in AIC Source Mode Register[6]
pAIC->AIC_IECR = (1<<AT91C_ID_USO); // Enable the USARTO interrupt in AIC

// enable the USARTO receiver and transmitter
PUSARTO->US_CR = AT91C_US_RXEN | AT91C_US_TXEN;

// enable the USARTO receive interrupt

PUSARTO->US_IER = AT91C_US_RXRDY; / enable RXRDY usart0 receive interrupt
PUSARTO->US_IDR = ~AT91C_US_RXRDY; // disable all interrupts except RXRDY
// set up buffer pointer and character counter

pBuffer = &Buffer[0];

nChars = 0;

// enable IRQ interrupts
enableIRQ();

// at this point, only the USARTO receive interrupt is armed!

AT91SAM7 Serial Communications 49 Of 91

Demo_sam7x256.cmd

This linker script file is almost exactly the same as the linker script in the tutorial “Using Open Source Tools
for AtmelAT91SAMY7 Cross Development”. It basically instructs the linker where to place the code and data
in memory.

e */
/* demo_sam7x256.cmd LINKER SCRIPT */
/* */
/* */
/* The Linker Script defines how the code and data emitted by the GNU C compiler and assembler are */
/* to be loaded into memory (code goes into FLASH, variables go into RAM). */
/* Y
/* Any symbols defined in the Linker Script are automatically global and available to the rest of the */
/* program. */
/* */
/* To force the linker to use this LINKER SCRIPT, just add the -T demo_sam7ex256.cmd */
/* directive to the linker flags in the makefile. For example, */
/* */
/* LFLAGS = -Map main.map -nostartfiles -T demo_sam7ex256.cmd */
/* */
/5 */
/* The order that the object files are listed in the makefile determines what .text section is */
/* placed first. &4
/& */
/* For example: $(LD) $(LFLAGS) -o main.out crt.o main.o lowlevelinit.o */
[/ */
/* crt.o is first in the list of objects, so it will be placed at address 0x00000000 &
/5 */
/* */
/* The top of the stack (_stack_end) is (last_byte_ of_ram +1) - 4 */
/* Y
/* Therefore: _stack_end = (0x00020FFFF + 1) - 4 = 0x00021000 - 4 = 0x0020FFFC */
/* */
/* Note that this symbol (_stack_end) is automatically GLOBAL and will be used by the crt.s */
/* startup assembler routine to specify all stacks for the various ARM modes */
/* Y
7= MEMORY MAP */
/* | | */
/* S — e S B | 0x00210000 */
/* 0 | |0x0020FFFC <====-===--- _stack_end */
/* . | UDF Stack 16 bytes [*/
/* . | | */
/* . |e==ccamscscccmnmnasazcnnanaasas | 9x0020FFEC */
/* . | | */
/5 - | ABT Stack 16 bytes | */
/* . | | */
/* . |e==cmcamsmssmcmmmmnsascmnanmmsas | 9x0020FFDC */
v I I */
s . | | */
/* c | FIQ Stack 128 bytes | */
/* . | | */
/* c | */
/* RAM |oesccocsccocsosonacsocscancacacss | 0x0020FF5C */
/* . | | */
/* . | | Y
/* . | IRQ Stack 128 bytes | */
/* | | */
/* . | */
/* . |e=ecmcococococonooasascnnanacasas | 9x0020FEDC */
/* . | | */
/* 0 | SVC Stack 16 bytes | */
/* . | | */
/* c == m e e | 0x0020FECC */
/* . I I */

AT91SAM7 Serial Communications 50 Of 91

/* | stack area for user program | */
/= | | */
/& | | */
s | | */
/* | free ram | =y
/* . | */
/* o lococoooooooocoooo00000000000000000 |0x002006D8 <---------- _bss_end */
/* . | | */
/* c | .bss uninitialized variables | */
/* . Jooocoooooonooacooooooocnconoooooos |0x002006D0 <-=-=---=-=--=-- _bss_start, _edata */
/* | | */
/* | .data initialized variables | */
/* | | */
/¥ ieeeeeeas >| |0x00200000 */
/* Y
/* */
/* immmmm——— S| mm e |0x00040000 */
/* . | | */
/* . | | */
/* c | free flash | */
/* | | */
/* - | */
s c looocooooconoooonoacoononooooooooa |0x000006D0 <---------- _bss_start, _edata */
/* - | | =y
/* c | .data initialized variables | */
/% . I */
/* c | == mmmmm e e |0x000006C4 <----------- _etext */
s | | */
/* | C code | =y
/* | | */
/5 | | */
/* [e |0x00000118 main() */
e | | */
/5 | Startup Code (crt.s) | */
/* | (assembler) | */
/* . | | */
/* c R e |0x00000020 */
/* . | */
/* . | Interrupt Vector Table | */
/* 0 | 32 bytes | */
/* pmmmm—ea- L L TP T |0x00000000 _vec_reset */
/* */
/* */
/* Author: James P. Lynch June 22, 2008 */
/* */
/¥ e e sokokok */
/* identify the Entry Point (_vec_reset is defined in file crt.s) */
ENTRY(_vec_reset)
/* specify the AT91SAM7X256 memory areas */
MEMORY
{
flash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM */
ram : ORIGIN = 0x200000, LENGTH = 64K /* static RAM area */
}
/* define a global symbol _stack_end (see analysis in annotation above) */
_stack_end = 0x20FFFC;
/* now define the output sections */
SECTIONS
{
. = 0; /* set location counter to address zero */
.text : /* collect all sections that should go into FLASH after startup */
{
(.text) / all .text sections (code) */
(.rodata) / all .rodata sections (constants, strings, etc.) */
(.rodata) /* all .rodata* sections (constants, strings, etc.) */
(.glue_7) / all .glue_7 sections (no idea what these are) */
(.glue_7t) / all .glue_7t sections (no idea what these are) */
_etext = .; /* define a global symbol _etext just after the last code byte */
} >flash /* put all the above into FLASH */

AT91SAM7 Serial Communications 51 Of 91

.data : /* collect all initialized .data sections that go into RAM */
_data = .; /* create a global symbol marking the start of the .data section */
(.data) / all .data sections */
_edata = .; /* define a global symbol marking the end of the .data section */
} >ram AT >flash /* put all the above into RAM (but load the LMA initializer copy into
FLASH) */
.bss : /* collect all uninitialized .bss sections that go into RAM */
{
_bss_start = .; /* define a global symbol marking the start of the .bss section */
(.bss) / all .bss sections */
} >ram /* put all the above in RAM (it will be cleared in the startup code */
. = ALIGN(4); /* advance location counter to the next 32-bit boundary */
_bss_end = . ; /* define a global symbol marking the end of the .bss section */
}
_end = .; /* define a global symbol marking the end of application RAM */
Makefile

The makefile is similar to the one in the “Using Open Source Tools...” tutorial. One helpful change is that
“implicit” rules are used to do the assemble and multiple compiles. Normally, to compile a C file, you specify
a “target: prerequisites” line followed by a “command” line that has been indented by a tab.

main.o: main.c at91sam7x256.h board.h

arm-elf-gcc -l./ -c -fno-common -O0 -g main.c

The Make manual explains on page 77 that you can skip the specification of the “command” line and let
Make deduce the operation needed by just inspecting the file extensions in the dependency line. This being
the case, all we need is the dependency line above by itself.

main.o: main.c at91sam7x256.h board.h

The Make utility deduces that because you have a C object file and a C source file (looking at the file
extensions), you need to run the C compiler.

Now, there are a couple of things to remember.
For compiling C programs, Make creates a command line like this:
$(CC) -c $(CPPFLAGS) $(CFLAGS) source.c.

For an assembler program, Make creates a command line like this:
$(AS) $(ASFLAGS) source.s

These are built-in variables used by Make in utilizing explicit rules. If you look at this makefile's variables,
we use the very same variable names to identify the compiler, assembler, etc. This makes it very easy to
add files to the makefile — just update the OBJECTS list and the “dependency” lines.

AT91SAM7 Serial Communications 52 Of 91

3k kk % 3k %k 3k %k k Sk kk kK k

Makefile for Atmel AT91SAM7X256 - flash execution

Description of Compiler Flags (CFLAGS)

-mcpu=arm7tdmi identifies the target ARM microprocessor

-I./ search current working directory for include files

-C do not invoke the linker

-fno-common compiler gives each global variable space in .data segment

-00 set lowest otimization level (best for debugging)

-g include debugging information in output file

-fomit-frame-pointer don't store frame pointer for functions that don't need it

-Wcast-align emit warning if casting pointer causes alignment problems

-MD emits a one-line file such as main.d file with dependency line like this:
main.o: main.c at91sam7x256.h board.h

note: use -MD once to get your dependency lines set up - then remove.

Description of Assembler Flags (ASFLAGS)
-mapcs - 32 select apcs-32 ARM procedure calling convention
-g include debugging information in output file

Description of Linker flags (LFLAGS)

-omain.out set the output filename to "main.out"
-Tdemo_sam7ex256.cmd identifies the linker script file

-Map main.map create a map file with the name "main.map"
--cref add cross reference table to the map file

Description of ObjCopy flags (CPFLAGS)
--output-target=binary convert main.out to a binary file (main.bin)

Description of ObjDump flags (ODFLAGS)
-X display header information, symbol table etc.
--syms display the symbol table

HHEHHEHEEHAEHEEEEER AR RS HR

James P Lynch June 22, 2008

KRRk okokskokok ok sk ok ok ok ok ok ok ok ok ok o o o sk sk sk sk ok ok ok ok ok ok ok ok ok ok ko ke sk sk sk ok sk ok ok ok ok ok ok ok ok o ok ok sk sk ok sk sk ok ok ok ok ok ok ok ok ke ko ok sk ok sk ok ok ok ok ok ok ok ok ok ok sk ok sk sk ok ok sk ok ok ok

NAME = demo_sam7ex256

variables

cc = arm-elf-gcc

AS = arm-elf-as

LD = arm-elf-ld -v

cP = arm-elf-objcopy

oD = arm-elf-objdump

CFLAGS = -mcpu=arm7tdmi -I./ -c -fno-common -00 -g -fomit-frame-pointer -Wcast-align

ASFLAGS = -mapcs-32 -g

LFLAGS = -omain.out -Tdemo_sam7ex256.cmd -Map main.map --cref
CPFLAGS = --output-target=binary

ODFLAGS = -x =--syms

tOBJECTS = crt.o \ :

J main.o \ :

- Add any additional
lowlevelinit.o \ ' . .
usart®_setup.o \ “d——source files to this list

usart0_isr.o \ .
isrsupport.o !

ALL - make target called by Eclipse (Project -> Build Project)
all: main.out

@ echo "...create binary file"

$(CP) $(CPFLAGS) main.out main.bin

@ echo "...create dump file"

$(0D) $(ODFLAGS) main.out > main.dmp

AT91SAM7 Serial Communications 53 Of 91

main.out: $(OBJECTS)
@ echo "...linking"
$(LD) $(LFLAGS) -omain.out $(OBJECTS) libgcc.a

list of dependencies for each C and ASM file in the project
Note: Implicit Rules will deduce using source file extension which to run: C compiler or ARM assembler

crt.o: crt.s

main.o: main.c at9lsam7x256.h board.h .
lowlevelinit.o: lowlevelinit.c at9lsam7x256.h Board.h Add any additional
usart0_setup.o: usart0_setup.c at91lsam7x256.h board.h 4_ source files to this list
usart0_isr.o: usart0_isr.c at9lsam7x256.h board.h

isrsupport.o: isrsupport.c

CLEAN - make target called by Eclipse (Project -> Clean ...)
clean:
-rm $(OBJECTS) main.out main.bin main.map main.dmp

3k 3k 3k 3k 3k >k 3k 3k 3k 3k Sk >k ok k >k 3k 5k %k ok 5k %k k Sk kk Sk 3k ok 3k ok k

FLASH PROGRAMMING

Alternate make target for flash programming only

You must create a special Eclipse make target (program) to run this part of the makefile
(Project -> Create Make Target... then set the Target Name and Make Target to "program")

Open0CD is run in "batch" mode with a special configuration file and a script file containing
the flash commands. When flash programming completes, OpenOCD terminates.

Note that the script file of flash commands (script.ocd) is part of the project

Programmers: Martin Thomas, Joseph M Dupre, James P Lynch
Sk 3k ok sk ok 3k 3k 3k Sk ok ok 5k 5K 5K 5K kK 5k >k 5k 5k 3k Sk Sk Sk ok ok Sk 5k ok 5k 5k >k >k >k %k %k >k %k %k 5k ok ok 5k 3k 3k ok ok ok ok

H HHEHEHEHEHHBHHEHEERHEHR

specify output filename here (must be *.bin file)
ARGET = main.bin

—

specify the directory where openocd executable resides
OPENOCD _DIR = 'c:/Program Files/openocd-r657/bin/'

specify OpenOCD executable (pp is for the wiggler, ftd2xx is for the USB debuggers)
#0OPENOCD = $(OPENOCD_DIR)openocd-pp.exe
OPENOCD = $(OPENOCD_DIR)openocd-ftd2xx.exe

specify OpenOCD configuration file (must be in your project folder)
OPENOCD_CFG = openocd_program.cfg

program the AT91SAM7S256 internal flash memory
program: $(TARGET)

@echo "Flash Programming with OpenOCD..." # display a message on the console
$(OPENOCD) -s $(OPENOCD_DIR) -f $(OPENOCD_CFG) # program the onchip FLASH here
@echo "Flash Programming Finished." # display a message on the console

AT91SAM7 Serial Communications 54 Of 91

Openocd_program.cfg

In this project, | elected to place both OpenOCD configuration files in the project folder. The most recent
revisions of OpenOCD seem to have trouble with a space character in the path to the configuration file (c:\
Program Files\, for example). The safest thing to do is to place these files in your project (assuming that its
path doesn't have embedded space characters) since we know that Windows has a proper path to our
project folder.

This OpenOCD configuration file is for Flash Programming. If you create an alternate Make Target called
“program”, clicking on “program” in the make targets view will start the flash programming operation.

This particular OpenOCD configuration file is for the Olimex ARM-USB-OCD JTAG debugger interface.
Check my original tutorial for configuration files for the other Amontec and Olimex devices.

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Olimex ARM-USB-0CD
interface ft2232

ft2232_device_desc "Olimex OpenOCD JTAG A"
ft2232_layout "olimex-jtag"

ft2232_vid_pid 0x15BA 0x0003

jtag_speed 2

jtag_nsrst_delay 200

jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_type] [srst_typel
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 0xf Oxe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 6 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>
run_and_halt_time 0 30

commands below are specific to AT91sam7 Flash Programming

#target_script specifies the flash programming script file
target_script 0 reset script.ocd

#working_area <target#> <address> <size> <'backup'|'nobackup'>
working_area 0 0x00200000 0x4000 nobackup

#flash bank at9lsam7 0 0 0 0 <target#>
flash bank at91sam7 0 0 0 0 0

AT91SAM7 Serial Communications 55 Of 91

Openocd.cfg

This OpenOCD configuration file is used when you wish to run OpenOCD as a debugging agent (daemon).

This file is also imported into the project's folder so as to guarantee a proper Windows path to it.

#define our ports
telnet_port 4444
gdb_port 3333

#commands specific to the Olimex ARM-USB-0CD
interface ft2232

ft2232_device_desc "Olimex OpenOCD JTAG A"
ft2232_layout "olimex-jtag"

ft2232_vid_pid 0x15BA 0x0003

jtag_speed 2

jtag_nsrst_delay 200

jtag_ntrst_delay 200

#reset_config <signals> [combination] [trst_typel [srst_typel
reset_config srst_only srst_pulls_trst

#jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
jtag_device 4 0x1 0xf Oxe

#daemon_startup <'attach'|'reset'>
daemon_startup reset

#target <type> <endianess> <reset_mode> <jtag#> [variant]
target arm7tdmi little run_and_init 06 arm7tdmi_r4

#run_and_halt_time <target#> <time_in_ms>

run_and_halt_time 0 30

Script.ocd

When you run the Makefile target “program”, the openocd_program.cfg file calls this programming script
file to manage flash programming. Note the use of the “flash write_image” command below. This is a new
command for OpenOCD and they removed the “flash program” command | used in the previous tutorial.

flash write_image main.bin 0x100000 bin
reset run
shutdown

AT91SAM7 Serial Communications

program the onchip flash
reset, then let target run
stop OpenOCD

Open0OCD Target Script for Atmel AT91SAM7S256
#
Programmer: James P Lynch, Martin Thomas
#
wait_halt # halt the processor and wait
armv4_5 core_state arm # select the core state
mww Oxffffff60 0x00320100 # set flash wait state (AT91C_MC_FMR)
mww Oxfffffd44 0xa0008000 # watchdog disable (AT91C_WDTC_WDMR)
mww Oxfffffc20 0xab000601 # enable main oscillator (AT91C_PMC_MOR)
sleep 100 # wait 100 ms
mww Oxfffffc2c 0x00480a0e # set PLL register (AT91C_PMC_PLLR)
sleep 200 # wait 200 ms
mww Oxfffffc30 0x7 # set master clock to PLL (AT91C_PMC_MCKR)
sleep 100 # wait 100 ms
mww Oxfffffdo8 0xa5000401 # enable user reset AT91C_RSTC_RMR
sleep 10 # wait 10 msec

#

#

#

56 Of 91

Building the Project

If you use Eclipse/CDT to create a project named “demo_sam7ex256” and import the source files from the
attachment to this tutorial, you will have a serial communications project that should build without errors.

When you click the “Build All” button, the following console display will reflect building of the project.

& C/C++ - demo_sam7ex256/script.ocd - Eclipse Platform

Fle Edit Refactor Mavigate Search Run Project Window Help

Tk = VTN C A OG- S : P [%5 Debug |BR Cjce+

[l Problems | ¥£] Tasks [B console £3 E Properties | 44 Search B Bl i~ =8|~

(C-Build [demo_sam7ex?56] =
i)

*%T Build of configuration Defsult for project demo_sam7exZ5e FFFF

make =1l =

arn-elf-as -mapes-32 -g -0 Crt.o crt.s EE

arm-elf-goe -mopu=arm?tdmi -I./ - -fno-common -00 -g -fomit-frame-pointer -Woast-align -C -0 maih.o main.c (@

arm-elf-goe —mepu=arm7tdmi -I./ -c -fno-common -O0 -g —fomit-frame-pointer -Weast-align - -0 lowlevelinit.o lowlevelinit.c B

arm-elf-goe -mepu=arm?tdmi -I./ -c -fno-common -00 -g -fomit-frame-pointer -Weast-align -c —o usart0_setup.o usart0_setup.c

arm-elf-goo —mepu=armtdmi -I./ - —fno-common -O0 -g —fomit-frame-pointer -Weast-align -c —o ugart0_isr.o usart0_isr.c

arm-elf-goe -mepu=arm7cdmi -I./ - -fno-common -O0 -g -fomic-frame-pointer -Woast-aliogn - -0 iZrsupport.o isrsupport.c

...linking

arn—elf-ld -v -owain.out -Tdewo_sam7ex256.cwd -Map main.wap --cref -owain.out crt.o main.o lowlevelinit.o usartl_setup.o usart0_isr.o
isrsupport.o libgeoco.a

GNU 1ld (GNU Einutils) 2.18

...create binary file

arn—elf-objocopy —-output-target=hinary main.out mwain.hin

«..create dump file

arn-elf-objdump -xX —--=yHs main.out > main. dmp

e

=]

Adding an LED to the Olimex SAM7-EX256 Board

For some unknown reason, the Olimex SAM7-EX256 board doesn't have a user-programmable LED to
serve as a background activity indicator. It's fairly easy to add one.

470 Q

3.3 volt @—/\/\/\/\/\—
Anode
\\ Cathode

PA3 @ Cathode

Radio Shack Red LED
276-026 T-1 size
3volt 15 ma 2.5 med

We can use Port PA3 to drive the LED,; it can supply 8 ma which is just right for a cheap Radio Shack red
LED called out above. You'll need a 470Q resistor to limit the current to 7ma.

AT91SAM7 Serial Communications 57 Of 91

Pin 18 on the EXT connector is 3.3 volts; pin 1 is port PA3 as shown below.

Pin 18 on the
EXT connector

is top - right, one
| pin to the left

Pin 1 on the
EXT connector
is bottom - left

(T

AIMEL

AT91SAM7X256
AU

Programming the Sample Application into Flash

Remember that the Makefile has an alternate target “program:” that runs the OpenOCD utility in one-shot
mode to program the flash. Note that in the “Make Targets” view on the upper right below, there is a
“program” target that you can click on. Doing that will execute the “program” target in the makefile and
program your onchip flash. See the “Using Open Source Tools ...” tutorial for information on how to set up
the OpenOCD flash programming facility.

& C/C++ - demo_sam7ex256/makefile - Eclipse Platform
File Edit Refactor Mavigate Search Run Project Window Help

M-l @ idE-s-d-- KR8 i H-0-Q-I®P TG EH-F-0 6 B %5 pebug [FECicer |
r[\jPrD]ect Explor &2 = O || £ usartd_setup.c usartl_isr.c makefile 3 script.ocd €] main.c] =g EE Outline | @) Make Targets 53 =g
= A &
H = # specify OpendCD executsble (pp is for the wiggler, ftd2xx is for the USE debu — 2 E

= 15 demo_sam7ex256 ~ H#OPENOCD = § (OPENOCD_DIR)openocd-pp.exe ERE] demo_sam7exZ56

[l Includes OPENOCD = § {OPENOCD_DIR)openccd-frd2xx.exe = .settings

b ato1samrxese.h (&) program

m Board.h # specify OpenocD configuration file (in your project folder)

@ crk.s OPENOCD_CFG = opencocd program.cfog

€] isrsuppart.c

@ lowlevelinit, c
@ main.c # program the ATI13AMTSZ56 internsl flash memory
€] usarto_isr.c $ (TARGET)

[€] usarto_setup.c fECh0 "Flash Programming with OpenQcD...™ # displavy a message on the
=] erblst b § (OPENOCD) -= § (OPENOCD_DIR) -f §(OPENOCD_CFG) # program the onchip FLASH
crko [Fecho "Flash Programming Finished." # display a message on the
demo_sam7exzse6 i
isrsuppott.o < | 2>
§ libgee, : =
II glcc al' " BA Problems Z.Tasks El Console &2 E= Properties | 4 Search @ G| # - =0
b lowlevelint,o
A main.bin C-Build [demo_sam7ex256]
B i, dren ™)
g | &
i Writable Insert 955

You should see something like the console view shown below. If things are looking good, there will be the
LED blinking about once a second due to the main program idle background loop. The thing to look for is:

Info: options.c:50 configuration_output_handler(): wrote 1896 byte from file main.bin in 0.265625s (6.970588 kb/s)

This does indicate that we wrote the main.bin file into onchip flash in %4 second.

AT91SAM7 Serial Communications 58 Of 91

& C/C++ - demo_sam7ex256/makefile - Eclipse Platform g@@

File Edit Refactor Mavigate Search Run Project Window Help

Hw i o g ES [@ (-0 i®ms R B %5 Debug |[E Cict+

[Problems | 2 Tasks | E] Consle 22 = properties | <7 Search & G =t - =& |

C-Build [demo_sam7exz56] =
“

##* Build of configuration Defsult for project demo_ssm7exZ5o *F+*

make program =

Flash Programming with OpenOCD... EE

'c:/Program Files/openocd-r657/bin/'openocd-frdzxx.exe -s 'c:/Program Files/openocd-r657/bin/' -f openocd program.cfg # program the @

onchip FLASH here)

Open On-Chip Debugger (2008-05-16 20:15) swvn: 657

URL: http://svn.berlios.de/svnroot/repos/openocd/trunk

Info: options.c:50 configuration output handler () : jrag speed: Z, 2

Info: options.c:50 configuration output_handler () : Open On-Chip Debugger (2005-05-16 20:15) svn: 657

Info: jtag.c:1376 jtag exawine_chain(): JTAG device found: O0x3f0£0£0f (Manufscturer: Ox7VE7, Part: Oxf0f0, Version: 0x3)

Info: Jrag.c:1376 jrag examine chain(): JTAG device found: OX3IL0L0L0Lf (Manufaccurer: 0x757, Part: OXf0L0, Version: 0x3)

Info: target.c:237 target_init_handler(): executing reset script 'script.ocd'

Info: options.c:50 configuration output_handler (): core state: ARHN

Info: options.c:50 configuration output_handler () : wrote 1896 byte from file main.bin in 0.265625s (6.970588 kh/s)

Info: Jtag.c:1376 jtag examine chain(): JTAG device found: ORILOL0L0f (HManufacturer: 0x7S87, Part: OXKf0L£0, Version: O0x3)

Warning: arw?_9 common.c:712 arm?_9 poll(): DEGACK set, but the target did not end up in the halted stated 1

User: target.c:435 target_process_reset () : Timed out waiting for halt after reset

Flaszh Programming Finished.

: 0% g [y

Testing the Interrupt Driven Application

Note again that the application waits for you to type 10 characters and then retransmits them back as a
burst. You will need to connect a standard 9-pin serial cable from your desktop computer's COM1 port to
the RS-232 connector on the Olimex board and use a serial terminal emulator program to type the ten
characters and view the results.

Now it's true that this application can be tested with the standard Windows Hyper Terminal utility, located
in the “accessories” folder. This Windows program is a good example of “crapware”; programs placed into
Windows that are teaser editions of commercial programs that they want you to purchase. The Hyper
Terminal program has no screen “clear” button, you have to restart it to get a clear screen. In my view, that
disqualifies it!

There is a perfectly acceptable Open Source terminal emulation program called “Realterm” that can do the
job and it has a “clear” button (now your author is happy!). You can download the Realterm program from
SourceForge using this link:

http://downloads.sourceforge.net/realterm/Realterm_2.0.0.57_setup.exe?modtime=1204263582&big_mirror=0

Realterm downloads as an installer executable that will unpack and install Realterm on your computer.

When you run Realterm for the first time, there will be a couple of settings to deal with to configure it for
9600 baud, 1 start bit, 8 data bits, 1 stop bit and no parity plus half-duplex.

AT91SAM7 Serial Communications 59 Of 91

http://downloads.sourceforge.net/realterm/Realterm_2.0.0.57_setup.exe?modtime=1204263582&big_mirror=0

In the opening screen below, Within the “Display” tab, click on the “Half Duplex” check box to turn on local
echo (so you can see what you are typing).

~_| RealTerm: Serial Capture Program 2.0.0.57

Display | Port | Capture| Pins | Send | EchoPart| 120 | 1252 | 12CHise | Misc | An| Clear| Freeze| |

Dizplay &5 v i ; Status

? iscii v T Line mode _| Connected

 Howspace] | | InvertData _|RHD[2)

; H_exS+ Agoil | _|TED (3

('“ ::]ngt Data Erames BCTS (8]

" Hex R _|DCo)

- tniis E'i_yte; = _Gul L1735)
uink Ihgle uip .

C Asci _|Ring (9]

(f: Binary Rows Cals _|BREAK

— HE’;'E Teminal Font| (16 %] |89 =] [T Scrolback | Enor

‘ou have to dick in terminal window before you can bype any chars out |(Char Count:0000000 |(CPS:0 Port: 1 57600 &N1 MNone

Within the “Port” tab, set the baud rate to “9600”, set the Port to “1” for COM1, and hit the “Change” button.
On my version, the parity, data bits and stop bits were already set properly.

<C| RealTerm: Serial Capture Program 2.0.0.57

Display Part | Capture | Pins | Send | EchePort| 120 | 12C2 | 12CMise | Mise | An| Clear| Freeze| _|
Status
ﬂEort |1 ﬂ Open Spy 4 _ | Connected
Parity Data Bitz —Stop Bits £ allive ey Cotnsl :ll -T-sjg [[32]]
2 L 2 Recel [r7
© MNone | & gbis & bt o2 | eooe RenChar Tors@
i . i .
~ Esgn (" 7 hits Hardware Flow Control [Transmit Xoff Char. |15 _|DCo(1)
 Mak | © Bbis | & None "~ RTSACTS | DSR (5]
" Space | ¢ Bhits|| " DTR/DSR " R54851ts . | Ring (3]
o _|EBREAK
_ | Eror
‘You can use Ackiver automation to contral me! Char Count: 0000000 (CPS:0 Fort: 1 57600 M1 Mane

AT91SAM7 Serial Communications 60 Of 91

Now reset the Olimex SAM7-EX256 board and type 10 characters. After the 10" one is entered, the
application will send the ten characters back in a burst. You can do this over and over!

% RealTerm: Serial Capture Program 2.0.0.57
81234567870

\\

Y ‘V"
Characters Characters
sent received

Displap Port | Captue | Pins | Send | EchoPort| 120 | 1202 | 12CMise | Misc | An| Clear| Freeze| |
Statug
Baud |E|EI:":I ﬂE':"t |1 j Open 5F'.'£| " Change |'7 _ | Connected
Farity Diata Bitz | - Stop Bits Software Flow Conrol j]F'Ei[l:: [[g]]
= = = Recei |17
 Mone | & @hits | & 1ht 2hits Bl R Hom e 0TS i)
- : ['
r~ ESSn £ 7 bits Hardware Flow Contral [Transmit Xaff Char: |13 _|DCo)
“ Mark " Bhits | | * Mone " RTS/CTS _|DSR(F]
 Space | ¢ Sbits || ¢ DTR/DSR(RS485ks ~ | Ring 9]
v _|EREAK
| Errar
You can use Activer aukomation to conkral me! Char Count: 20 CPS:0 Park: 1 9600 3M1 None

This application is “interrupt-driven” where each character, send or receive, causes an interrupt. We put the
incoming characters into a common buffer and transmitted the collected characters from the same buffer.
You can use your imagination to change this scenario; you could put incoming characters into a circular
buffer with put and get pointers, put each character into an RTOS queue, the sky is the limit.

This application caused 20 interrupts; ten for received characters and 10 for transmitted characters. If you
use a Direct Memory Access technique to do this, there are only two interrupts (one interrupt for receive
“end-of-message” and one interrupt for “transmit” end-of-message. You will be pleased to see that it's not
very difficult to modify this example to support DMA operation of the USARTO.

AT91SAM7 Serial Communications 61 Of 91

Direct Memory Access

Direct memory access (DMA) has been around since the time of the first mainframe computers such as the
IBM System 360. Engineers noticed that there were clock cycles where the memory wasn't being accessed
(during instruction decode, for example). They designed circuits that would use those spare memory cycles
to transfer bytes from the RAM memory to peripherals such as a printer (this was called “cycle stealing in
those days). Just about everything we see in microprocessor development today evolved from discoveries
made in the heyday of mainframe computers.

The Atmel AT91SAM7X256 chip also has a DMA capability. It allows transfer of bytes from peripherals to
memory or vice versa. All you have to do is set up a pointer and a byte count and turn it on. You'll get an
interrupt when its finished.

It's even more sophisticated — there can be two pointers and byte counts. This allows use of a ping-pong
buffer scheme where when one buffer gets filled up, the DMA controller will automatically switch to the
second buffer using the secondary pointer and byte count. This allows you to empty the first buffer while
the second one is being filled up — clearly necessary when you high speed communications. For this
demonstration, we will not use the second buffer.

DMA capability is provided for the debug serial port, both USART serial ports, both synchronous serial
controller (SSI) ports, and both serial peripheral interface (SPI) ports. The Ethernet controller has its own
DMA and the USB unit uses a dual-port memory.

USARTO DMA Registers

While there is a chapter in the Atmel AT91SAM7X256 data sheet on DMA, it is very generic. The DMA
registers are integrated into the register set of each peripheral supported by the DMA controller. The
memory map of the USARTO registers, shown below, refers to the DMA setup registers at the bottom of the
list.

Table 30-12. USART Memory Map

Offset Register Name Access Reset State
0x0000 Control Register US_CR Write-only -
0x0004 Mode Register UsS_MR Read/MWrite -
0x0008 Interrupt Enable Register US_IER Write-only -
0xoooC Interrupt Disable Reqgister US_IDR Write-only -
0x0010 Interrupt Mask Register Us_IMR Read-only 0x0
0x0014 Channel Status Register US_CSR Read-only -
0x0018 Receiver Holding Register US_RHR Read-only 0x0
0x001C Transmitter Holding Register US_THR Write-only -
0x0020 Baud Rate Generator Redister Us_BRGR Read/Write 0x0
0x0024 Receiver Time-out Register US_RTOR Read/Write
0x0028 Transmitter Timeguard Register Us_TTGR Read/Write Hel'e are the DMA
0X2C -0X3C | Reserved - - registers.
0x0040 FI DI Ratio Ragister US_FIDI Read/MWrite
0x0044 Number of Errors Register Us_NER Read-only -
0x0048 Reserved - - -
0x004C IrDA Filter Register US_IF ReadWrite 0x0
0X5C - OxFC Reserved — - -
0x100 - 0x128 Reserved for PDC Registers - - -]‘_

AT91SAM7 Serial Communications

62 Of 91

USARTO PDC Receive Pointer Register

The Receive Pointer Register is where you load the address of the buffer that is to receive the incoming
characters.

22441 PDC Recelve Polnter Reglster

Reglster Name: PERIPH_RPR

Access Type: Read/Write
3 30 29 28 27 28 25 24

| RXPTR |
23 22 21 20 19 18 17 18

| RXPTR |
15 14 13 12 11 10 9 8

| RXPTR |
7 8 5 4 3 2 1 0

| RXPTR |

* RXPTR: Recelve Polnter Address

Address of the next receive transfer.

The buffer is defined in the file “usartO_isr.c” and can hold 32 bytes. Here we set up a pointer to the
USARTO data structure and thus load the Receive Pointer Register with the address of the buffer.

extern char Buffer[]; // holds received characters

extern unsigned long nChars; // counts number of received chars
extern char *pBuffer; // pointer into Buffer

volatile AT91PS_USART pUsart® = AT91C_BASE_USO; // create a pointer to USARTO structure
pUsart0->US_RPR = (unsigned int)Buffer; // address of DMA input buffer

USARTO PDC Receive Counter Register

We place the number of expected receive characters in the Receive Counter Register. The DMA controller
will decrement this count each time a character arrives and transfer the character to the buffer. When the

count hits zero, we get a ENDRX interrupt.

22.4.2 PDC Recelve Counter Reglister

Reglster Name: PERIPH_RCR
Access Type: Read/Write
3 30 29 28 27 28 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXCTR |
7 3] 5 4 3 2 1 0
| RXCTR |

* RXCTR: Recelve Counter Value

Mumber of receive transfers to be performed.

AT91SAM7 Serial Communications 63 Of 91

Since we want to read in 10 characters, we set the DMA receive count to ten.

pUsart0->US_RCR = 10; // we'll read in 10 chars via DMA

USARTO PDC Transmit Pointer Register

The Transmit Pointer Register is where you load the address of the buffer that contains the outgoing
characters.

22.4.3 PDC Transmit Polnter Register

Reglster Name: PERIPH_TPR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| TXPTR |
23 22 21 20 19 18 17 16

| TXPTR |
15 14 13 12 11 10 2] 8

| TXPTR |
7 B 5 4 3 2 1 0

| TXPTR]

* TXPTR: Transmit Polnter Address

Address of the transmit buffer.

The 32-byte buffer is defined in the file “usartO_isr.c” and serves both the transmit and the receive
operation. Here we load the Transmit Pointer Register with the address of the buffer.

pUsart0->US_TPR = (unsigned int)Buffer; // address of DMA output buffer (use same one)

USARTO PDC Transmit Counter Register

We place the number of expected transmit characters in the Transmit Counter Register. The DMA controller
will decrement this count each time a character is sent. When the count hits zero, we get a ENDTX
interrupt.

22.4.4 PDC Transmit Counter Reglster

Reglster Name: PERIPH_TCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 B
| TXCTR |
7 5 5 4 3 2 1 0
| TXCTR |

* TXCTR: Transmlit Counter Value

TXCTR is the size of the transmit transfer to be performed. At zero, the peripheral DMA transfer is stopped.

AT91SAM7 Serial Communications 64 Of 91

Since we want to transmit 10 characters, we set the DMA transmit count to ten.

pUsart0->US_TCR = 10; // we'll transmit 10 chars via DMA

USARTO0 PDC Receive Next Pointer Register

The Receive Next Pointer Register is where you load the address of the secondary buffer that is to receive
the incoming characters after the primary buffer fills up. When the primary buffer fills up, this pointer is
copied into the USART_RPR and reception continues.

2245 PDC Recelve Next Pointer Reglster

Reglster Name: PERIPH_RNPR

Access Type: Read/Write
31 30 29 28 27 28 25 24

| RXNPTR |
23 22 21 20 19 18 17 18

| RXNPTR |
15 14 13 12 11 10 9 8

| RXNPTR |
7 5 5 4 3 2 1 0

| RXNPTR |

* RXNPTR: Recelve Next Polnter Address
RXNPTR is the address of the next buffer to fill with received data when the current buffer is full.

Since we're not planning to use this buffer chaining feature in this example, we just set the pointer to zero.

pUsart0->US_RNPR = (unsigned int)0; // next DMA receive buffer address
// if set to zero, it is not used

USARTO0 PDC Receive Next Counter Register

We place the number of expected receive characters destined for the alternate buffer in the Receive Next
Counter Register. When the primary buffer fills up, this count is copied into the USARTO_RCD register. The
DMA controller will decrement this count each time a character arrives and transfer the character to the
alternate buffer. When the count hits zero, we get a RXBUFF interrupt.

The Atmel data sheet states that “if the Next Counter Register is equal to zero, the PDC disables the
trigger while activating the related peripheral end flag”. This means that setting the “next receive count
register” to zero disables the “chained” buffers feature.

This is a good place to point out that the ENDRX and ENDTX interrupts signify that the current buffer has
either been filled (receive) or emptied (transmit). Also, the RXBUFF and TXBUFE interrupts signify that
both the primary and secondary buffer has either been filled (receive) or emptied (transmit). We are not
using the secondary buffer feature in the example project, but it is fairly straightforward to set up.

AT91SAM7 Serial Communications 65 Of 91

22.4.6 PDC Recelve Next Counter Reglster

Reglster Name: PERIPH_RNCR
Access Type: Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RXNCR |
7 [5 4 3 2 1 0
| RXNCR |

* RXNCR: Recelve Next Counter Value
RXN|CR is the size of the next buffer to receive.

Below we set the Receive Next Counter register to zero to disable the chaining feature.

pUsart0->US_RNCR = (unsigned int)0; /I next DMA receive counter
Il if set to zero, it is not used

USARTO PDC Transmit Next Pointer Register

The Transmit Next Pointer Register is where you load the address of the secondary buffer that be
transmitted after the primary buffer has emptied.

2247 PDC Transmit Next Polnter Reglster

Reglster Name: PERIPH_TNPR

Access Type: ReadWrite
31 30 29 28 27 26 25 24

| TXNPTR |
23 22 21 20 19 18 17 16

| TXNPTR |
15 14 13 12 11 10 9 B

| TXNPTR |
7 5 5 4 3 2 1 0

| TXNPTR |

+ TXNPTR: Transmit Next Polnter Address

TXNPTR is the address of the next buffer to transmit when the current buffer is empty.

Since we're not planning to use this chained buffer feature in the example, we just set the pointer to zero.

pUsart0->US_TNPR = (unsigned int)0; // next DMA transmit buffer address
// if set to zero, it is not used

AT91SAM7 Serial Communications 66 Of 91

USARTO PDC Transmit Next Counter Register

The Transmit Next Counter Register is where you specify the number of characters to be transmitted using
the secondary buffer.

22.4.8 PDC Transmit Next Counter Reglster

Reglster Name: PERIPH_TNCR
Access Type: ReadWrite
3 30 20 28 27 2 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXNCR |
7 & 5 4 3 2 1 0
| TXNCR |

+ TXNCR: Transmit Next Counter Value
TXNCR is the size of the next buffer to transmit.

Since we are not using the chained buffer feature in this example, we set the value to zero to disable the
“chained buffer” feature.

pUsart0->US_TNCR = (unsigned int)O0; // next DMA transmit counter
// 1f set to zero, it is not used

USARTO PDC Transfer Control Register

The Transfer Control Register allows us to enable and disable receiver and transmitter DMA operations

2249 PDC Transfer Control Register

Register Name: PERIPH_PTCR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - [- I - [- [- I - [- [- |
23 22 21 20 19 18 17 16

[- [- | - [- [- | - [- [- |
15 14 13 12 11 10 9 8

| — | — | — | — | — | — | s | TXTEN |

6 5 4 3 2 1 0
| — | — | — | — | — | — | mxtDis | RxTEN |

* RXTEN: Receiver Transfer Enable
0 = No effect.

1 = Enables the receiver PDC transfer requests if RXTDIS is not set.

* RXTDIS: Receiver Transfer Disable
0 = No effect.

1 = Disables the receiver PDC transfer requests.

* TXTEN: Transmitter Transfer Enable
0 = No effect.

1 = Enables the transmitter PDC transfer requests.

* TXTDIS: Transmitter Transfer Disable
0 = No effect.

1 = Disables the transmitter PDC transfer requests

AT91SAM7 Serial Communications 67 Of 91

Since we intend to receive 10 characters first, we enable the receive transfer and disable the transmit
transfer.

pUsart0->US_PTCR = AT91C_PDC_RXTEN | // enable receive transfer,
AT91C_PDC_TXTDIS; // disable transmit transfer

Set Up for DMA Interrupts

For the normal interrupt-driven example given previously, we used the RXRDY and TXEMPTY interrupts.
For the DMA example, we will use the ENDRX and ENDTX interrupts instead. Thus, the code to set up the
interrupts is exactly the same excepting for the ENDRX and ENDTX interrupts.

// Set up the Advanced Interrupt Controller (AIC) registers for USARTO

volatile AT91PS_AIC pAIC = AT91C_BASE_AIC; // pointer to AIC data structure
pAIC->AIC_IDCR = (1<<AT91C_ID_USO); // Disable USARTO interrupt in AIC
pAIC->AIC_SVR[AT91C_ID USO] = // Set the USARTO IRQ handler address in AIC Source
(unsigned int)Usart0IrgHandler; // Vector Register[6]
pAIC->AIC_SMR[AT91C_ID USO] = // Set the interrupt source type and priority
(AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | 0x4); // in AIC Source Mode Register[6]
pAIC->AIC_IECR = (1<<AT91C_ID_USO); // Enable the USARTO interrupt in AIC

// enable the USARTO receiver and transmitter
pUsart0->US_CR = AT91C_US_RXEN | AT91C_US_TXEN;

// enable the USARTO end-of-receive interrupt
pUsart0->US_IER = AT91C_US_ENDRX; // enable ENDRX usart0® end-of-receive interrupt
pUsart0->US_IDR = ~AT91C_US_ENDRX; // disable all interrupts except ENDRX

AT91SAM7 Serial Communications 68 Of 91

DMA Interrupt Handler

To process characters using the DMA, we only have two USARTO IRQ interrupts to deal with; the ENDRX
interrupt that occurs when the 10" character has arrived and the ENDTX interrupt that occurs after the 10™
character has been transmitted.

The DMA interrupt service routine is conceptually simpler since when either interrupt has occurred, all
characters have been either received or transmitted. All that has to be done is reset the buffer pointers and
character count and enable for either transmission or reception.

When the ENDRX “end-of-message” interrupt asserts, we do the following steps to turn things around for
transmission.

// we have a end-of-receive interrupt (ENDRX)
pUsart0->US_RCR = 10; // restore the receive count - clears ENDRX flag

// point the transmit buffer pointer to beginning of buffer, set count to 10
pUsart0->US_TPR = (AT91_REG)&Buffer[0];// address of DMA output buffer (use same one)

pUsart0->US_TCR = 10; // we'll transmit 10 chars via DMA

// disable the end-of-receive interrupt, enable the end-of-transmit interrupt
pUsart0->US_IER = AT91C_US_ENDTX; // enable usart@ end-of-transmit interrupt
pUsart0->US_IDR = ~AT91C_US_ENDTX; // disable all interrupts except ENDTX

// enable transmit DMA transfers, disable receive DMA transfers

// note: this will START the transmission of whatever is in the Buffer[32]!

pUsart0->US_PTCR = AT91C_PDC_TXTEN | // enable transmit transfer,
AT91C_PDC_RXTDIS; // disable receive transfer

Likewise, when the ENDTX “end-of-message” interrupt asserts, we do the following steps to turn things
around for reception (so the application runs over and over).

// we have a end-of-transmit interrupt (10 characters have clocked out)
pUsart0->US_TCR = 10; // restore the transmit count - clears ENDTX flag

// point the receive buffer pointer to beginning of buffer, set count to 10
pUsart0->US_RPR = (AT91_REG)&Buffer[0];// address of DMA output buffer (use same one)

pUsart0->US_RCR = 10; // we'll receive 10 chars via DMA

// enable receive interrupt, disable the transmit interrupt

pUsart0->US_IER = AT91C_US_ENDRX; // enable usart0 end-of-receive interrupt
pUsart0->US_IDR = ~AT91C_US_ENDRX; // disable all interrupts except ENDRX

// enable receive DMA transfers, disable transmit DMA transfers

// note: the DMA transfer will start when the first character arrives!

pUsart0->US_PTCR = AT91C_PDC_RXTEN | // enable receive transfer,
AT91C_PDC_TXTDIS; // disable transmit transfer

AT91SAM7 Serial Communications 69 Of 91

A simplified flow chart of the process is given below.

USARTO Interrupt Entry

Transmit
Interrupt

Receive

ENDRX or ENDTX?

Restore receive count Restore transmit count

(this clears ENDRX interrupt) (this clears ENDTX interrupt)
RCR=10 TCR=10

Load Transmit Pointer Load Receive Pointer Register
Register

RPR = &Buffer[0];
TPR = &Buffer[0];

\ \/

Load Transmit Count Register Load Receive Count Register
TCR = 10; RCR = 10;

Disable ENDRX interrupt Disable ENDTX interrupt
Enable ENDTX interrupt Enable ENDRX interrupt

Enable RXTEN transfers

Enable TXTEN transfers
Disable TXTEN transfers

Disable RXTEN transfers

(this waits for 1% character)

(this starts 1% transmission)

USARTO Interrupt Exit

AT91SAM7 Serial Communications 70 Of 91

Project Listings — DMA Version

Only two source files are different for the DMA version of the project: “usart0_isr.c” and “usart0_setup.c”.
All other files are unchanged but are included in this tutorial's attachment.

USART0_SETUP.C

All we do in the DMA version of “usart0_setup.c” is to initialize the DMA registers and set up for ENDRX
and ENDTX interrupts.

// skok sk ok $ok
// usart0_setup.c

// Purpose: Set up USARTO (peripheral ID = 6) 9600 baud, 8 data bits, 1 stop bit, no parity
// This example uses DMA control of the USARTO

// We will use the onboard baud rate generator to specify 9600 baud

// The Olimex SAM7-EX256 board has a 18,432,000 hz crystal oscillator.

// MAINCK = 18432000 hz (from Olimex schematic)

// DIV = 14 (set up in lowlevelinit.c)
// MUL = 72 (set up in lowlevelinit.c)

// PLLCK = (MAINCK / DIV) * (MUL + 1) = 18432000/14 * (72 + 1)
// PLLCLK = 1316571 * 73 = 96109683 hz
// MCK = PLLCLK / 2 = 96109683 / 2 = 48054841 hz

// Baud Rate (asynchronous mode) = MCK / (8(2 - OVER)CD)
// MCK 48054841 hz (set USCLKS = 00 in USART Mode Register US_MR - to select MCK only)
// OVER 0 (bit 19 of the USART Mode Register US_MR)

// cD divisor (USART Baud Rate Generator Register US_BRGR)
// baudrate = 9600 (desired)

// 48054841 48054841
// a little algebra: BaudRate = -------------- = ememmmeaaa-
// (8(2 - 0)CD) 16(CD)

// 48054841 48054841
// D = - = cemmcoomes = 312.857037
// 9600 (16) 153600

// CD = 313 (round up)

// 48054841 48054841
// check the actual baud rate: BaudRate = ----------u--u-- = mmmmmmemeee- = 9595.6
// (8 (2 - 0)313 5008

// desired baudrate 9600
// what's the error: Error = 1 - ------mmmmmmmmmnan = 1 - --------- = 1 - 1.00045854 = -.0004585
// actual baudrate 9595.6 (not much)

// Author: James P Lynch June 22, 2008
// kK

// skok koK ok k

// Header Files
//
#include "at9lsam7x256.h"
#include "board.h"

AT91SAM7 Serial Communications 71 Of 91

//
//

External Globals

skok sk ok

//
extern
extern
extern

char Buffer[]; // holds received characters
unsigned long nChars; // counts number of received chars
char *pBuffer; // pointer into Buffer

//
//

Function Prototypes

//

void Usart@IrgHandler(void);

void

USARTOSetup(void) {

// enable the usart0 peripheral clock

volatile AT91PS_PMC pPMC = AT91C_BASE_PMC; // pointer to PMC data structure

pPMC->PMC_PCER = (1<<AT91C_ID USO); // enable usart0 peripheral clock

// set up PIO to enable USARTO peripheral control of pins

volatile AT91PS_PIO pPIO = AT91C_BASE_PIOA; // pointer to PIO data structure

pPI0->PI0O_PDR = AT91C_PAO_RXDO | AT91C_PAl_TXDO; // enable peripheral control of PA@ and PAl
pPIO->PI0_ASR = AT91C_PIO_PAO | AT91C_PIO_PAl; // assigns the 2 I/0 lines to peripheral A function
pPIO->PI0 BSR = 0; // peripheral B function set to "no effect"

// set up the USARTO registers
volatile AT91PS_USART pUsart0 = AT91C_BASE_USO; // create a pointer to USARTO structure

// USARTO Control Register US_CR (read/write)
//
// I e |
// | |
// R |
// 31 24
//
// [ERELELEE ECTLICEE RETLEELE R Rt et EECECLt] EECLLLED
// | RTSDIS RTSEN DTRDIS DTREN |
1/ |--mnsee |--mne |- nmee |- o-s e e LCDeEnt] EEPIEE
// 23 22 21 20 19 18 17 16
//
// |---on- |=eneees REEERE |-=oeeene |-xezneee e R S —— |
// | RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA |
7 [==------ [==------ |==------ [==------ [==------ [===----- [===----- [===-=--- I
// 15 14 13 12 11 10 9 8
//
// [-x-mne |-=osoe |---zxone |-----ne |--o=---- Jl-zm=eee [EEREEREE [EEREEEs |
// | TXDIS TXEN RXDIS RXEN RSTTX RSTRX - - |
/7 [--msmeee |--nms e EERTOREE |----s-ee |-------- [EEPEEREE [EEREEREE [EERTEEEr |
// 7 6 5 4 3 2 1 0
//
// RSTRX = 1 (reset receiver)
// RSTTX = 1 (reset transmitter)
// RXEN = 0 (receiver enable - no effect)
// RXDIS = 1 (receiver disable - disabled)
// TXEN = 0 (transmitter enable - no effect)
// TXDIS = 1 (transmitter disable - disabled)
// RSTSTA = 0 (reset status bits - no effect)
// STTBRK = 0 (start break - no effect)
// STPBRK = 0 (stop break - no effect)
// STTTO = 0 (start time-out - no effect)
// SENDA = 0 (send address - no effect)
// RSTIT = 0 (reet iterations - no effect)
// RSTNACK = 0 (reset non acknowledge - no effect)
// RETTO = 0 (rearm time-out - no effect)
// DTREN = 0 (data terminal ready enable - no effect)
// DTRDIS = 0 (data terminal ready disable - no effect)
// RTSEN = 0 (request to send enable - no effect)
// RSTDIS = 0 (request to send disable - no effect)
pUsart0->US_CR = AT91C_US_RSTRX | // reset receiver

AT91C_US_RSTTX | // reset transmitter

AT91C_US_RXDIS | // disable receiver

AT91C_US_TXDIS; // disable transmitter

// USARTO Mode Register US_MR (read/write)

I I I
// | FILTER MAX_ITERATION |

/1 [£ommmmee e EENS |--oonee |£nmmmme e |
// 31 29 28 27 26 24

/1 RECERRES RRTEORRE |roeenes |-mzeeee |-mssee |-mssoe |-eesoe [--ssones |
// | DSNACK INACK OVER CLKO MODE9 MSBF |

/1 [RECRRRED ERTEORRE RERCRA |-omseee |-mmeeee |-msseee |--mseee RELPREE |
// 23 22 21 20 19 18 17 16

/1 [-msnmma oo | -mmsenozeena | -mmmmm e |-mseoaee |
// | CHMODE NBSTOP PAR SYNC |

// USART_MODE = 0000 normal
// USCLKS = 00 choose MCK for baud rate generator
// CHRL = 11 8-bit characters
// SYNC = 0 asynchronous mode
// PAR = 100 no parity
// NBSTOP = 00 1 stop bit
= 00 normal mode, no loop-back, etc.
// MSBF = 0 LSB sent/received first
// MODE9 = 0 CHRL defines character length
USART does not drive SCK pin
16 x oversampling (see baud rate equation)
// INACK = 0 NACK (not used)
// DSNACK = 0 not used since NACK is not generated
// MAX_ITERATION = 0 max iterations not used
// FILTER = 0 filter is off

pUsart0->US_MR = AT91C_US_PAR_NONE | // no parity
0x3 << 6; // 8-bit characters

// USARTO Interrupt Enable Register US_IER (write only)

I I I I |
// | CTSIC DCDIC DSRIC RIIC |

/1 [eenees RRPELRRE RECERREE |-mmeeee |-=e e |-mmeee NS [-=emnes |
// 23 22 21 20 19 18 17 16

I I I I I I |
// | NACK ~ RXBUFF TXBUFE ITERATIO TXEMPTY TIMEOUT |

/1 [eeeenes |-mmmeeee REREEEE | === |-=emeeee RS |-=mee e [--emnes |
// 15 14 13 12 11 10 9 8

pUsart0->US_IER = 0x00; // no usart@ interrupts enabled (no effect)

// USARTO Interrupt Disable Register US_IDR (write only)

/1 ERREEEEE ERRPEEE ERREEEEE |-eennee |--emnee |-eemnee |-ommnee ERRTEEEE |
// | |

// 31 30 29 28 27 26 25 24
//

| | ! |
// | CTSIC DCDIC DSRIC RIIC |
/1 [eenees RRPELRRE RECERREE |-mmseee |-=eeeee |-mmeee |-=ee e [-=emnes |
// 23 22 21 20 19 18 17 16
//

I I I I I I |
// | NACK RXBUFF TXBUFE ITERATIO TXEMPTY TIMEOUT |

/1 REETERES |-mmmeeee REBUEEE |-=mseee |-meseee |-=me e |-=mee e [--emees |
// 15 14 13 12 11 10 9 8

| I I I I I I I |
// | PARE FRAME ~ OVRE ENDTX ENDRX RXBRK TXRDY RXRDY |

/1 [omeeee |-mmmee REDERREE |-mmeeee |--meeee |--eeeee |-mee e [--emnes |
// 7 6 5 4 3 2 1 0

pUsart0->US_IDR = OxFFFF; // disable all USARTO interrupts

// USARTO Interrupt Mask Register US_IDR (read only)

I I I I |
// | CTSIC DCDIC DSRIC RIIC |

7 [====---- |==--=--- |==------ [==------ [==------ [===----- [==--=--- [===----- I
// 23 22 21 20 19 18 17 16

I I I I I I |
// | NACK ~ RXBUFF TXBUFE ITERATIO TXEMPTY TIMEOUT |

/1 [omeeees |-mmmeeee REBUEEE |--mee oo |-=eseeee RS |-mmee e [--emnes |
// 15 14 13 12 11 10 9 8

| I I I I I I I |
// | PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY |

/1 [-omeeeee ERERE REDERREE |-mme e |--meeee |--eeeee |-mee e [-=emnes |
// 7 6 5 4 3 2 1 0

// read only, nothing to set up here

// USARTO Receive Holding Register US_RHR (read only)

// this is where any incoming character will be

// USARTO Transmit Holding Register US_THR (write only)

pUsart0->US_RTOR = 0;

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

pUsart0->US_TTGR = 0;

7

this is where we place characters to be transmitted

USARTO Baud Rate Generator Register US_BRGR

= 0x139
=0 (not used)

USARTO Receiver Time-out Register US_RTOR

USARTO transmitter TimeGuard Register US_TTGR

(read/write)

(313 from above calculation for 9600 baud)

(read/write)

// receiver time-out (disabled)

(read/write)

// transmitter timeguard (disabled)

//

USARTO FI DI RatioRegister US_FIDI (read/write)
RESEEEEE |=menes |-=eeenes RECSLEEE RUTEEEEE RESELEEE RETEEEED [ESTELEEE |
| |
REETEEEE ECIICIT | --oeene- [-=mseee- = nsrees [-=esze- [EEERTEEE [ERERCEEE |
31 30 29 28 27 26 25 24
[ERETECEE EETCELEE RETCEELE |-emenene [ELTERELE |-eeenene ELTCRLEE ELTERLEE |
| |
EEELICEE EETCICEE RCPCLTLE |-=esnene |-eesnene |-eesneee EEECIEE EETCIEE |
23 22 21 20 19 18 17 16
|-=--=---- [-------- [-------- [-------- [-------- [==-mmmmmmmm oo |
| FI_DI_RATIO |
|-=--=---- [-------- [-------- [-------- [-------- [=--mmmmmmm e |
15 14 13 12 11 10 9 8
|peemcnnascacnoeananeEEanEE0EEEEEEEE00000E0800E00000PEEEEE0EEEE0EEEECE00 |
| FI_DI_RATIO |
R e e e R T LU LR L L L ELTLLILLIE |
7 0
not used, nothing to set up here
USARTO Number of Errors Register US_NER (read only)

31 24
e ORLueeR e LT T EL TP R PR R P R PR L PR LT RET TR CURPELEPPEPPEEES |
| |
RE T T T T R TR R TR P R PR LT T LT PR T R CTRPELT PEPPEEPS: |
23 16
R REGGRECTEE LT TR LTEE LU REE LR EURPEETPETPREES |
| |
e RCGEECTIE LT TR EE PP EL PR T PR LU R e LR EUREEET PETPRER |
15 8
R e L LC L LT LT LR T LR ELRPEETEEPPREES |
| NB_ERRORS |
R CRT LT ET EU PR EEP T EL PR LPEE L TR EREURPEETPEPPREEs |
7 0

Read-only, nothing to set up here

USARTO IrDA Filter Register US_IF (read/write)
Rt e e P UL EE LR LR R R R R PR L EPEERRLE LR |
| |
T T e R T R T e P EE T e e T CE T EE L EPEL PP ELEPEPEERELEETD |
31 24
[CEGRnCE T LT e P L EP T e T L EE T LR T EPELEEPETEEPEPEERELEEEE |
| |
e e E R e P e e P T e T T O P T EE e EEEL e T EP PP EEELEEL |
23 16
e e e e e e e e e L E TR EE LT EPELEEPEL P LEELRLEELRLRD |
| |
e e e e e e r e e E T CE LT EE L O EPELCPELREEELRLEELRLRE |
15 8
e CE LT ECE LT EEELEPEL P LEELRLEELRLRD |
| IRDA_FILTER |
R e e e e e E e e PR O TR EE P LR EEELEPEL P LT ELRLEELRLRE |
7 (]

not used, nothing to set up here

[/ S Rss s les sls s el sl s sl s sl s sl s sl s sl s sl s sl s sl
// The following are the DMA registers for the USARTO
[/ SRR s s sl s sl s el e sl s sl s sl s sl s sl s sl s s s sl s sl

// USARTO PDC Receive Pointer Register US_RPR (read/write)

77 ||peeessssss0050005005500550550055005505000500000005000500550050055005000

// I RXPTR I
// R R e e SR |
// 31 0

//

pUsart0->US_RPR = (unsigned int)Buffer; // address of DMA input buffer

// USARTO PDC Receive Counter Register US_RCR (read/write)

pUsart0->US_RCR = 10; // we'll read in 10 chars via DMA

// USARTO PDC Transmit Pointer Register US_TPR (read/write)

/00 |9 G e o G 0 0 O O O I S O 0 0 O OO SO e OO SO CO CC OO CO SO S0 SO

// I TXPTR I

// I e |

// 31 0

//

pUsart0->US_TPR = (unsigned int)Buffer; // address of DMA output buffer (use same one)

// USARTO PDC Transmit Counter Register US_TCR (read/write)

pUsart0->US_TCR = 10; // we'll transmit 10 chars via DMA

// USARTO PDC Receive Next Pointer Register US_RNPR (read/write)
YA LR
// I RXNPTR I
// I e |
// 31 0
//
pUsart0->US_RNPR = (unsigned int)0; // next DMA receive buffer address

// 1if set to zero, it is not used

// USARTO PDC Receive NextCounter Register US_RNCR (read/write)

pUsart0->US_RNCR = (unsigned int)0; // next DMA receive counter
// if set to zero, it is not used

// USARTO PDC Transmit Next Pointer Register US_TNPR (read/write)
// |===smeseemecenecececceeceeeeceeneeeneeseseseeeeeee e seseensee e |

// | TXNPTR I
// | === m e e neeeemeeeeeeeeeeeeeeeeeea |
// 31 0
//

pUsart0->US_TNPR = (unsigned int)0; // next DMA transmit buffer address

// if set to zero, it is not used

// USARTO PDC Transmit NextCounter Register US_TNCR (read/write)

//
pUsart0->US_TNCR = (unsigned int)0; // next DMA transmit counter
// if set to zero, it is not used

// USARTO PDC Transfer Control Register US_PTCR (write-only)

// I |

// | |

// I e |

// 31 16

//

1/ [EREEPELE |-nme e EEPELEEE EUPEPREE REFEPREE R] ELREREE

// | TXTDIS TXTEN |

/7 [EOPETRLE RECTCEES REPETREE EUPETELE REPELRLE REPELEED |2emezzes |emmezees |

// 15 14 13 12 11 10 9 8

//

// [ECREPRLE RECELEE RCPELREE REPELELE RUFELRLE RUTELEEE |=e==zzc= |e====ces |

// | RXTDIS RXTEN |

7 [==------ [===----- |===----- [===----- [==--=--- [===-=--- [===----- [===----- I

// 7 6 5 4 3 2 1 0

//

// RXTEN = 1 // receiver transfer enable (enabled)

// RXTDIS = 0 // receiver transfer disable (no effect)

// TXTEN = 0 // transmitter transfer enable (no effectd)

// TXTDIS = 1 // transmitter transfer disable (disabled)

//

pUsart0->US_PTCR = AT91C_PDC_RXTEN | // enable receive transfer,
AT91C_PDC_TXTDIS; // disable transmit transfer

// Set up the Advanced Interrupt Controller (AIC) registers for USARTO

volatile AT91PS_AIC pAIC = AT91C_BASE_AIC; // pointer to AIC data structure
pAIC->AIC_IDCR = (1<<AT91C_ID USO); // Disable USARTO interrupt in AIC Interrupt Disable
// Command Register

pAIC->AIC_SVR[AT91C_ID_USO] = // Set the USARTO IRQ handler address in AIC Source
(unsigned int)Usart0IrgHandler; // Vector Register[6]

pAIC->AIC_SMR[AT91C_ID USO] = // Set the interrupt source type and priority
(AT91C_AIC_SRCTYPE_INT_HIGH_LEVEL | 0x4); // in AIC Source Mode Register[6]

pAIC->AIC_IECR = (1<<AT91C_ID_USO); // Enable the USARTO interrupt in AIC Interrupt Enable

// Command Register

// enable the USARTO receiver and transmitter
pUsart@->US_CR = AT91C_US_RXEN | AT91C_US_TXEN;

// enable the USARTO end-of-receive interrupt
pUsart0->US_IER = AT91C_US_ENDRX; // enable ENDRX usart0 end-of-receive interrupt
pUsart0->US_IDR = ~AT91C_US_ENDRX; // disable all interrupts except ENDRX

// at this point, only the USARTO end-of-receive interrupt is armed!
// note: this means that incoming characters will not cause an interrupt until the 10th
// character is received.

USARTO_ISR.C

The DMA USARTO interrupt service routine is less complicated than the normal interrupt-driven version.
Interrupts occur at the end of a 10 character reception or transmission.

// Sk >k 3k ok k %k sk k% k

// usart0_isr.c

//

// USARTO Interrupt Service Routine - DMA version

//

// This demonstration is designed to read 10 characters into a buffer.
// After the 10th character arrives, transmit the 10 characters back.
//

// The application is interrupt-driven but uses the DMA.

//

// Author: James P Lynch June 22, 2008

//

// ok ok ok ok ok ok ok ok ok 3k Sk Sk Sk ke Sk Sk ok ok ok ok ok ok ok >k Sk Sk Sk Sk Sk ok Sk 3k ok ok ok ok ok ok ok >k ok Sk Sk Sk ok Sk Sk ok ok ok ok %k %k %k

// Header Files

// ok ok ok ok ok >k ok >k >k 3k 3k 3k Sk Sk Sk Sk ok ok ok ok ok ok >k >k 3k Sk 3k Sk Sk ok sk ok ok ok ok %k >k >k >k >k >k 3k Sk Sk ok Sk Sk >k ok ok %k %k %k %k

#include "at91sam7x256.h"
#include "board.h"

// ok ok ok ok ok ok ok ok ok 3k 3k Sk Sk Sk Sk Sk ok ok ok ok ok ok ok >k Sk Sk Sk Sk Sk ok sk ok ok ok ok ok ok ok ok ok ok Sk Sk Sk ok Sk Sk ok ok ok ok %k %k %k

// Global Variables

// 3k 3k 3k >k 5k 3k 2k 5k 3k >k 5k 3k 3k 3k Sk k ok ok 3k %k 5k 3k %k 5k Sk 5k ok k >k 3k 5k k >k 5k >k >k 5k k¢ %k 5k k %k >k 5k %k 5k 5k %k >k 5k %k >k >k %k k

char Buffer[32]; // holds received characters
unsigned long nChars = 0; // counts number of received chars
char *pBuffer = &Buffer[0]; // pointer into Buffer

void Usart@IrqHandler (void) {
volatile AT91PS_USART pUsart0 = AT91C_BASE_USO; // create a pointer to USARTO structure

// determine which interrupt has occurred (end-of-receive DMA or end-of-transmit DMA)
if ((pUsart0->US_CSR & AT91C_US_ENDRX) == AT91C_US_ENDRX) {

// we have a end-of-receive interrupt (ENDRX)

pUsart0->US_RCR = 10; // restore the receive count - clears ENDRX flag
// point the transmit buffer pointer to beginning of buffer, set count to 10

pUsart0->US_TPR = (AT91_REG)&Buffer[0]; // address of DMA output buffer (use same one)
pUsart0->US_TCR = 10; // we'll transmit 10 chars via DMA

// disable the end-of-receive interrupt, enable the end-of-transmit interrupt
pUsart0->US_IER = AT91C_US_ENDTX; // enable usart0® end-of-transmit interrupt
pUsart0->US_IDR = ~AT91C_US_ENDTX; // disable all interrupts except ENDTX

// enable transmit DMA transfers, disable receive DMA transfers
// note: this will START the transmission of whatever is in the Buffer[32]!
pUsart0->US_PTCR = AT91C_PDC_TXTEN | // enable transmit transfer,
AT91C_PDC_RXTDIS; // disable receive transfer

} else if ((pUsart0->US_CSR & AT91C_US_ENDTX) == AT91C_US_ENDTX) {

// we have a end-of-transmit interrupt (10 characters have clocked out)

pUsart0->US_TCR = 10; // restore the transmit count - clears ENDTX flag
// point the receive buffer pointer to beginning of buffer, set count to 10

pUsart0->US_RPR = (AT91_REG)&Buffer([0]; // address of DMA output buffer (use same one)
pUsart0->US_RCR = 10; // we'll receive 10 chars via DMA

AT91SAM7 Serial Communications 79 Of 91

// enable receive interrupt, disable the transmit interrupt
pUsart0->US_IER = AT91C_US_ENDRX; // enable usart0@ end-of-receive interrupt
pUsart0->US_IDR = ~AT91C_US_ENDRX; // disable all interrupts except ENDRX

// enable receive DMA transfers, disable transmit DMA transfers

// note: the DMA transfer will start when the first character arrives!

pUsart0->US_PTCR = AT91C_PDC_RXTEN | // enable receive transfer,
AT91C_PDC_TXTDIS; // disable transmit transfer

Building the DMA Application

Create a new Eclipse C project and give it the name “demo_sam7ex256_dma”. Import the source files
from the attachment to this tutorial and build the project. The screen capture below shows the build
operation.

& C/C++ - demo_sam7ex256_dma/usart0_isr.c - Eclipse Platform
File Edit FRefactor Mavigate Search Runm Project Window Help

Wil o @ T BT [@ P0G B G T % Debug |FEcic++
" '[Z! Problems | ¥ Tasks | Bl Consdle &3 = Properties | 47 Search & G == - =2
= =

_-Build [demo_sam7ex256_dma)
{Fin} a=
w#%%® Build of configuration Default for project demo_sSamwVexzZ56_dms F57F% i&

make all
assewmbling crt.2

arm—elf-as -ahls -mapcs-32 -0 crt.o crt.s > crt.lst
.compiling main.c

arm-elf-goe -I./ -o -fno-common -00 -g main.c
2oowpiling lowlevelinit.o

arm-elf-gee -I./ -c -fno-common -00 -g lowlevelinit.c
scompilling usartd setup.c

arm-elf-goee -I./ - -fno—comoon -00 -g usartl_setup.c
-compiling usartd isr.c

arm-elf-goe -I./ -c -fhno-common -00 -o usarcl_isr.c
.cowpiling isrsupport.c

arm-elf-gee -I./ -c -fno-common -00 -g isrsupport.c

.. linking

arm—elf-ld -v -Map wain.wap -Tdewo_sew7ex256_dwa.cwd -0 wain.out crt.o main.o lowlevelinit.o usartl_setup.o usartd isr.o

]

isrsupport.o libgeoc.a

GNU 1d (GNU Einutils) z.15

... Copying

arm—elf-objcopy ——output-target=binary main.out main.bin
arm—elf-objdump -x —--=¥ns main.out > main.dmp

=

After successfully building the project and programming it into flash memory, the application can be tested
with RealTerm. You will notice that the application works just the same as the interrupt-driven version.

The screen shot below shows the operation of the application, this time in DMA mode.

AT91SAM7 Serial Communications 80 Of 91

RealTerm: Serial Capture Program 2.0.0.57
'ABCDEFGHI J.

Typed Returned
Characters Characters

Display Port | Captue| Pins | Send | EchoPort| 120 | 1202 | 12CMise | Misc | An| Clear| Freeze| |
Statuz
Baud |E|EDI:I ﬂE':"t |1 ﬂ Open 5F'E| " Change |'7 _ | Connected
Farity Data Bitz | [Stop Bits Softwars Flow Control j ?’i[[: [[g]]
= = £ Recei 17
* More | 8bits| | @ 1Ht 2his W 2 o e T CTs i)
- : ['
r~ ESSH £ 7 bits Hardware Flow Cantral [Transmiit Xaff Char: |13 _|DCo)
 Mark (" Bhitz | | % Mone " RTS/CTS _|DSR(F]
" Space | ¢ Shbits | " DTR/DSR(RS485ks ~ _ |Ring[d]
v _|BRE&K
| Errar
Ztrl+Tab ko step through tab sheets Char Count: 20 P30 Pork: 1 9600 M1 Mone

Other Possibilities

Thoughtful readers should be wondering: “What if the incoming message is of undetermined length, but is
terminated by a carriage-return”? This can be handled by thoughtful design.

As each character comes in, the character is written to your buffer in RAM and the DMA receive buffer
pointer is incremented and the DMA receive character count is decremented. You can at any time read the
DMA receive pointer register (USARTO_RPR) and the DMA receive counter register (USARTO_RCR) and
inspect what has come in. Be aware the the pointer points to the next free byte in the buffer, so you will

have to look back one byte in the buffer to see the last character entered. You could check if that byte is a
carriage-return.

If you used an RTOS such as FreeRTOS, you could embed this check in the kernel tick interrupt handler
and make this check every 10 msec, for example. If the last entered character is not a carriage-return, do
nothing. If a carriage-return is detected, then you can disable the DMA receive operation and set a
semaphore to wake up a special task to process the completed receive message.

If you are not using a RTOS, then a counter-timer could be set up to run at high speed (1 msec) and make
this check in the timer IRQ handler.

For transmission, you usually know the message length, so normal DMA setup would apply.

AT91SAM7 Serial Communications 81 Of 91

About the Author

Jim Lynch lives in Grand Island, New York and is a software developer for Control Techniques, a subsidiary
of Emerson Electric. He develops embedded software for the company’s industrial drives (high power
motor controllers) which are sold all over the world.

Mr. Lynch has previously worked for Mennen Medical, Calspan
Corporation and the Boeing Company. He has a BSEE from Ohio
University and a MSEE from State University of New York at Buffalo.
Jim is a single father and has two grown children who now live in
Florida and Nevada. He has two brothers, one is a Viet Nam veteran in
Hollywood, Florida and the other is the Bishop of St. Petersburg, also
in Florida. Jim plays the guitar (search for lynchzilla on YouTube),
enjoys woodworking and hopes to write a book very soon that will
teach students and hobbyists how to use these high-powered ARM
microcontrollers.

Lynch can be reached via e-mail at: lynchO07@gmail.com

AT91SAM7 Serial Communications 82 Of 91

mailto:lynch007@gmail.com

Appendix

There have been changes to Eclipse and YAGARTO since | authored the “Using Open Source Tools for
Atmel AT91SAMY Cross Development” a year ago. In this appendix, abbreviated instructions to download
and install YAGARTO and create and build the Serial Communications Eclipse project are given that reflect
these changes.

Download Yagarto Components

Go to the Yagarto web site (www.yagarto.de) and download the latest components; there are three install
files and the Eclipse zip file to download. In the latest YAGARTO, Michael Fischer has you download the
Eclipse zip file directly from the Eclipse web site. He also directs you to the SourceForge web site to get the
GNU ARM Tool Chain. | suggest that you create a “c:\download” folder to receive these components.

Download

The packages of YAGARTO can be found here:

Package Version Last Version Download OpenOCD from
Open On-Chip Debugger (2.51 ME) the YAGARTO web site.
{ mdasum: 656804526767 14435 ed35befBa2fEd) POUbIe-CIICK DL
(717 19.06.2008 installer.
This wersion of OpenQCD supports the following
JTAG interfaces.
YAGARTO Tools 700 KB)
Download YAGARTO Tools
[md3surm: a1cB54d5704bd3c 11007 Jeel2eeela) from the YAGARTO web site.
Include tools like make, sh, touch and more. 20070303 03032007 l Double-click to run the
installer.
You only need these tools if you do not have
installed the Open On-Chip Dehugger,
and want to use e.q. J-Link / SAM-ICE.
YAGARTO GHU AREM toolchain (31 mMB) Egﬁ;ﬁfggo Download GNU ARM Toolchain
{ mdSsurn: 37bd37hYedSfAfd44d9789ac4a3b6ad) GCC- 4_2'_2 ' 0804 2008 14— from the SourceForge web site.
Many thanks to the devkitPro project, from GDB'6-8-50'20080308 Lesliz=alliel s i e sz lEe
whaom | took the source for Insight. Insight-6.8.50-20080308
Integrated Development Environment Eclipse Download Eclipse IDE from the
ou must download the IDE from eclipse.arg, but the EC!IDSG CTDT l EC"PS? web site.
link above will give you same instructions. Zylin plugin Unzip into the c:\ folder

When finished, your download folder should have the following components:

8% C:\download g@@l
l":'

File Edit View Favorites Tools Help

QBack =) | tr /.-" Search [Folders m' é‘é L|:| :Ij

Falders X MWame Size | Type Date Modified
¥ [0 Documerts and Settings A W37 openocd-r717-20080619.exe 2,984 KB Application 6(21/2008 12:07 AM
3 edipse-cpp-europa-winker-win3z.zip 61,509 KB Compressed (zipped) Folder 6/21/2008 12:13 AM
) download_save i) wagarto-bu-2,18_gec-4,2.2-c-c++_nl-1.16.0_gi-6.8.50_20080403, exe 31,002 KB Application 6/21(2003 12:09 AM
) drawings | Wi yagarto-tools-20070303-sekup. exe 700KE Application 6/21/2005 12:07 AM

< >

AT91SAM7 Serial Communications 83 Of 91

file:///C:/download
http://www.yagarto.de/
file:///C:/serial_communications_tutorial/

Install the YAGARTO Components

Once you have the YAGARTO components downloaded, it only takes a few minutes to set it all up.

Install OpenOCD

Double-click on the file “openocd-r717-20080619.exe” to start the OpenOCD installer. Take the defaults on
every question.

Install Eclipse IDE

Eclipse is extremely easy to install. Just unzip the file “eclipse-cpp-europa-winter-win32.zip” directly to
the “c:\” folder (your main drive root folder). This will create a “c:\eclipse” folder. Eclipse is a simple
executable — it does not make any entries into the Windows registry!

Look into the Eclipse directory and send the Eclipse executable (eclipse.exe) to the desktop as an icon.
You can click on that icon to start up Eclipse.

Install YAGARTO GNU ARM Tool Chain

Double-click on the file “yagarto-bu-2.18_gcc-4.2.2-c-c++_nl-1.16.0_gi-6.8.50_20080408.exe” to start the
GNU ARM Tool Chain installer. Take the defaults on every question.

Install YAGARTO Tools

Do not install this if you plan to use and have installed OpenOCD (whose directory has a copy of the
make.exe utility). If you need to install this, double-click on the file “yagarto-tools-20070303-setup.exe” to
start the Yagarto Tools installer. Take the defaults on every question.

The very necessary utility “make.exe” is not part of the YAGARTO GNU ARM tool chain. There is a copy of
it in the OpenOCD folder you just installed. If you didn't install OpenOCD because you plan to use the
JLink, then the YAGARTO Tools installation will give you a copy of the “make.exe” utility.

Install the JTAG Device Drivers

The very first time you plug in your JTAG debugger, you will hear the USB “beep” and will have to install the
USB or parallel port drivers to support your JTAG debugging hardware. The instructions in the tutorial
“Using Open Source Tools for AT91SAMY7 Cross Development” are still valid.

You will have to direct the driver installer to the YAGARTO folder that has the drivers. For example, the
Olimex ARM-USB-OCD drivers are in the folder: c:\Program Files\openocd-r717\driver\arm-usb-ocd\

AT91SAM7 Serial Communications 84 Of 91

file:///C:/eclipse

Start Up Eclipse

If you created a screen icon for Eclipse, click on it to start the Eclipse IDE.

Click this to
start Eclipse

Create an Eclipse Standard C Project

Click on “File — New — C Project”.

& C/C++ - Eclipse Platform

Edit Refactor Mavigate Search Run Project ‘Window Help
. 2 <5 A=) g T %% Debug |EC;’C++ |
Cpen File. .. C++ Project =518 ® —':'E
: =ou | @M 53
Clase ChrlHw [Project.... o | S|
Closs All e = S o o 4B By
Ciceainl CHIF SRR Caorvert bo a C/C++ Make Project m
[&] save 5 &% source Folder
E‘s‘] Save As... (% Folder
[Save Al Chlishiftrs | 67 Seurce File
Revert @} Header File
g
Move. ., & File
Fename... Fz & Class
Refresh F5 % Other
il e
Convert Line Delimiters To L4
(= Print.... Chrl+F
Switch Wworkspace L
Eag Import...
£ Export...
Properties Alk+Enter =
kﬂ B consale &2 \\E Propertles] E=2 Diebug | FIRE] e ™
1 main.c [demo_sam7exZ56] e s e =
2 script.ocd [demo_sam7ex256] :
3 openocd.cfg [demo_sam7exZ56]
4 openocd_program.cfg [demo_sam7exZ56]
Exit
e 0 iterns selected

AT91SAM7 Serial Communications 85 Of 91

Type in a project name (demo_sam7ex256) and click on “Makefile Project’. Make sure that “--Other
Toolchain--" is visible in the Toolchain: dialog box. Click “Finish” to exit and create the new project.

C Project

<7

Create C project of selected bvpe |

Project name: | demo_sam7exzse

Use default location

Praoject types: Taolchain:

-- Other Toolchain --

Shows project bvpes and toolchains only if they are supported on the platform

(@ Mexk = ” Finish H Cancel

Now you have an empty project named “demo_sam7ex256”. There are currently no files in this project.

& C/C++ - Eclipse Platform
File Edit Refactor Mavigate Search Run Project ‘Window Help

] [wil i e RV I B0 @ 0B RERCR % Debug | FEcjc+ |
[Project Explarer 52 =0 S 0|8 ou|@ma 2 =0
E|<)=={>v & =

125 dema_sam7ex256

E_\ Problems E,Tasks B conscle 22 £ Propetties ﬁDebug G| fﬁ - =0

Mo consoles to display at this time.

35 demo_sam7exz56

AT91SAM7 Serial Communications 86 Of 91

Import the Sample Project Files

Click on “File — Import” to retrieve the sample files.

i 3 ; ; ; o : : B R
ZEW y Ale+Shife+ . @' : ‘%' - : ﬁ' 0' %' : @ P 2 4 ﬁ|%qc++| »
pen File. ..) o
g S 0|(SEoutih 2N @make | =0
e &n outling is not avalable,
Rename... Fz
Refresh F5
Convert Line Delmiters To 4
Switch Workspace 4
7 Export...
Properties Alt+Enter
Exit

You should see this import screen. Click on “General” and then “File System” to get started. Click “Next”
to continue with the import operation.

& Import |:|®

Select
N N
Import resources from the local file system into an existing project. I E 5 I

Select an import source:

|tvpe filkar texk |

== General
@’] Archive File
QGZ Breakpoints
ﬁ Existing Projects into Workspace

= CiC++
= cvs
= Team

®

AT91SAM7 Serial Communications 87 Of 91

You should now see the following import screen.

& Import |:E]

File system ==
Source must not be empty, B
-
From directory: || v| [Browse...]

Into Folder: |demo_atmsam?_bhnkjash | [Browse, .

Options
|:| Owerwrite existing resources without warning
() Create complete folder struckure

(%) Create selected Folders only

Let's assume that the tutorial sample project files are in the folder
“c:\serial_tutorial_source\demo_sam7ex256\". Click on the “Browse” button above to search for this
folder. Select all the files in this folder and click “Finish” shown below to import the project files.

& Import |;|@

File system —

Import resources from the local file system, Ii' ;

-

From directary: | C:\serial_tutorial_sourceldemo_sam7exz56 v| [Browse. .,]

(= demo_sam7ex256 @ ak91sam7x256.h

@ Board.h

@ crb.s
demo_sam?exZSﬁ.cmd
isrsuppark.c

tlibgce.a

@ lowlesvelinit, o

€] main.c

| @makefile
Bopenocd)rogram.cfg
B openocd.cfg

B scripk,ocd

€] usarto_isr.c

@ usarkl_setup.c

Filter Types...] [Select all] [Deselect all]
Into folder: | demo_sam7exZ56 | [Browse, .,
Options

|:| Owerwrite existing resources without warning
(O Create complete folder structure

() Create selected folders anly

@ Finish] [Cancel

AT91SAM7 Serial Communications 88 Of 91

Now the Eclipse project shows the necessary files.

e Platform

File Edit Refactor Mavigate Search Run Project Window Help
i R - AR R C RN SR <A AL S I : < ebug ++
i} E-&-E-E- 8B LR R & B %5 Debug |BR cjo+ |
r[i‘;Project Explaorer &3 =0 =0 EE outlin | @ Make 2 =4
=R Pz

125 demo_sam7exZ56

m

T R

[b| at91sam7x256.h

@ Board.h

@ ks

@ isrsuppork.c

@ lowlewvelinit. o

@ main. c

€] usartoisr.c

@ usartl_setup.c
dema_sam7ex256,cmd
v libgce.a

L@ makefile

B openocd_program.cfg
m openocd. cfg

B script.ocd

[3_\ Problems Z, Tasks | & Console 532 E= Properties 3& Debug al

Mo consoles to display at this time,

1
Lk
[

0
a

0 5 demo_sam7exzse

Build the Project

Now click on the “Build All” button as shown below. The console view will show the results of the build.

& C/C++ - demo_sam7ex256/ma e Platform
File Edit Refactor Mawigate Search Run Project Window Help

- & o[- R8BI F-0-Q- @Y @B R e i %5 Debug | cioe+ |
[Project Explorer 52 = B/ [€] maine 3 = B 5= owiin | @ Make 2 =8
&~ P-’f B T e L PR TP T TS 8 =

o wain.c —

=] :5 dema_sam?ex256 = demo_sam7ex256

[ait) Includes o .
1 ateisam7xzse.h i Interrupt-driven USARTO demonstration program for Olimex 34
@ Board.h 4
@ et i Interrupt-driven simple demo reads 10 characters from T3ART(
. i When 10 characters are read, they are transwitted back to tl
@ istsupport.c ,r &
@ lowlevelinit.c < 1 3 -
[main.c = =
@ usartD_isr.c BJPrublems E‘Tasks El cCansole 52 = Properties :’{}‘Dehug & Ea| # ci- =08
] wsartn_setup.c -Build [demo_sam7ex256]
crt.o
[51 demo_sam?ex256.cmd #%%% Euild of configuration Default for project demo_ssmTexZ56 *#es
isrsupport.0
b libgee.a make all
IDw\eve\ln\t.D arm-elf-as —wapos-32 —g -0 Crt.o ort.s
£ main.bin arm-elf-gee -mepu=arm7tdmi -I./ -c -fno-common -00 —g -fomit-frame-pointer -Ucast-align - -0

main.o main.c
arm—elf-geoe —mepu=arm?tdwi -I./ -o -frno-comwon -00 —g -fomit-freme-pointer -Teast-align -z -0

lowlevelinit.o lowlevelinit.c
main. ouk

arm-elf-geo -—mopusarm7odmi -I./ -c -fno-common -00 —g -fomit-frame-pointer -Tcast-align -z -0
| @ makefile usartl_setup.o usartl_setup.c
[5] openocd_program.cfg arm-elf-goo -mepu=armitdmi -I./ -o -fno-common -O0 —g -fomit-frame-pointer -Weast-align -o -0
2] openocd.cig usartl_isr.o usartO_isr.g
2] seript.ocd arm-elf-goe —wepu=armiodmi -T./ -o -fho-common -00 —g -fomit-frame-pointer -Teast-align -o -0
usark0_ist.o isrsupport.o isrsupport.e
usarkd_setup.o .. .linking

arm-elf-ld —v -omain.out -Tdewo sam7ex256.cmd -Map main.mwap --cref -omain.out crt.o wain.o
lowlevelinit.o usart0_setup.o usart0_isr.o isrsupport.o libgoo.a

GHU ld (GNU BEinutils) Z.18

«..Ccreate binary file

arm-elf-objocopy —-output-target=binary mwain.out main.bin

«ea.Create dump f£ile

arm-elf-objdump —-® --Syms wain.out > mwain, dmp

o* “Writable Smart Insert 1:1

AT91SAM7 Serial Communications 89 Of 91

Set Up a Second Make Target for Flash Programming

The makefile has a secondary target designed to run OpenOCD in flash programming mode. To activate
this from within Eclipse, we need to create an alternate Make target.

In the Project Explorer view, make sure that the project is selected (highlighted). Click on “Project — Make
Target — Create..” as shown below.

& C/C++ - demo_sam7ex256/main.c - Eclipse Platform

File Edit Refactor Mavigate Search Run REEGEES Window Help

- CRECMEASC Close Project Y NS B = iz A T} %5 Debug | crc+ |
[Praject Explarer £2 =0 = 0|82 cutlin | @ Make &2 =
e i 9 g Eild Al Chrl+B =] <)
E <ED = Bui|dc0nﬁgurati0n5 N ﬁ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ.‘ﬂ‘ﬁﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬂ‘ﬁ************#*******ﬂ"ﬁ @] E
8% Saln f Bulld Project - b =5 demo_sam7ex256
-] Includes Euild Warking Set
2] @ at91sam7«256.h Clean... USARTO demonstration program for Glimex 341
[B| Board.h Build Automatically
[8 ert.s simnle demo reads 10 characters from UTIARTO
[isrslupport & Make Target l, they are transmitted back to tl
: Build... v
@ lowlevelinit, Properties | 5 b
@ main.c = ! £
- [€] usartO_ist.c [3_\ Prablems | ¥ Tasks | B Console 52 I Properties %‘F Debug S E Tl
B [£] usartD_setup.c C-Euild [derno_sam7ex256]
crk.o

demo_sam7ex256,cmd

isrsupport.o

##%% Build of configuration Default for project demo ssm7exi5e *rrF

libgee.a make all
|0W|9V9||nlt-° arm-elf-as -mapcs-3Z2 -y -0 Crt.o Crt.s
=9 main. bin arwm—r 1 f—rrr —menn=arm?edmi =T,/ - —frnn-commnn —00 - —Fomit—Frame-—nninter —lWrast-aliom - —-n

In the “Create a new Make Target” screen shown below, type “program” into both the “Target Name:” text
box and into the “Make Target: text box as shown below. Click on “Create” to finish.

& Create a new Make target [‘S_<|

Target Mame: | prograrm |

Make Targek

Make Target: | pru:ugram| |

Build command
Use default

Build command:

Build Setting
Stop on first build error,

Fun all project builders,

Create H Cancel

AT91SAM7 Serial Communications 90 Of 91

If you expand the “demo_sam7ex256” entry in the Make Target view on the upper right shown below, you'll
see that we created an alternate make target called “program”.

& C/C++ - demo_sam7ex256/main. e Platform
File Edit Refactor Mavigate Search Run Project Window Help
i b PEl & @ B iFg-0-Q- i@y o [%5 Debug | [Cjc++ |
[Project Explorer 52 = 0| [g mainc 52 = O/ 5% outlin | @) make 2 =0
E <ED = .'"’."" ol o O o o o &] &
=] :5 demo_sam7exZ56 4 LI C =2 == demo_sam7ex256
! Includes 4 (@ program
IE ab3lsamTE256. h £ Interrupt-driven UZARTO demonstration program for Olimex S4]
m Board.h 4
@ crbs £ Interrupt-driven simple demo reads 10 characters from UIARTI Click h
@ istsuppart.c £ When 10 characters are read, they are transmitted hack to] Ic ere to start
[€) lowlevelinit.c *’(f ; flash programming
@ main.c
€] usarto_isr.c [2/ Problems | ¥ Tasks | & Consale 22] Praperties | % Debug & B g- =08
[£] usarto_setup.c C-Build [demo_sam7ex256]
crt.o
demo_sam?exZS&.cmd #x#% Build of configuration Default for project demo Ssm7exZ5e #waw

If you double-click on the “program” target, the flash memory will be programmed as shown below. When it
completes, your application should start running.

& C/C++ - demo_sam7ex256/main.c - Eclipse Platform

File Edit Refactor

@- -
=0

=

=
[Project Explorer 52
= 4% demo_sam7ex256
[Includes

[B] ato1sam7xzs6.h
@ Board.h

@ crk.s

@ isrsupport.c

@ lowlevelinit. o

@ main.c

@ usarkd_isr.c

@ usarkl_setup.c

demo_sam7ex256,cmd
isrsupport.o

libgee.a

lowlesvelinit. o

tmain. bin

main.dmp

main.map
rain.o

)
E
=)
B

rnain. out

makefile
openocd_program.cfg
openocd.cfg
script,ocd
usark0_jsr.o
usarkl_setup.o

EEd

Mavigate Search Run Project

G @ R BB O-Q S MBI GE

Window Help

T %5 Debug | B i+ |

|| main.c &2 makefile = O/ 5% ouwtlin | @ make 2 =0
l/llu" ol o o o ol o ol o o o o ol ol il ol ol o o o ol ol ol ol ol ol ol ol @] E
i mRLn. o = == demo_sam7ex256
A (@) program
£ Interrupt-driven UZARTO demonstration program for Olimex S4]
A
o Interrupt—-driven simple demo reads 10 characters from UIARTIM
< >
[2/ Problems | ¥2] Tasks | B Conscle 52 = Properties | %% Debug & G| ™ - =0

C-Build [demo_sam7ex256]
##%% Build of configuration Default for project demo_sam7exZ5e FF%%

make program

Flash Programming with OpenOCD...

'c:/Program Files/openocd-r717/bin/ ' openocd-frdixx.exe —-=
-f openocd program.cig # program the onchip FLASH here
Open On-Chip Debugger (2008-06-19 19:00) 717

'ci/Program Files/openocd-r717/bin/’

avn:

UREL: http://svn.berlios.de/svnroot/repos/openocd/ trunk

Info: options.c:50 configuration output _handler(): jtag speed: 2, 2

Info: options.c:50 configuration output_handler(): ©pen On-Chip Debugger (2003-06-15 13:00)
avn: 717

Info: jtag.c:i 1389 jtag examine chain(): JTAG device found: O0x3ILOL0£0f (Manufacturer: O0x7E7,
Part: 0Oxf0£f0, Version: 0x3)

Info: jtag.c: 1389 jtag examine chain(): JTAG device found: Ox3L£O£0£0f (Manufacturer: O0x7E7,
Part: 0Oxf0£f0, Version: 0x3)

Info: target.ci237 target init _handler () : executing reset script 'script.ocd'

Info: options.c:50 configuration output handler(): core state: ARN

Info: options.c:50 configuration output_handler () : wrote 1596 byte from file main.bin in
0.250000s (7.406250 kh/s)

Info: jtag.c:1389 jtag examine chain(): JTAG device found: O0x3£0£0£0f (Manufacturer: O0x7YE7Y,
Part: 0Oxf0£f0, Version: 0x3)

Warning: arm?_9 comwon.c:743 arm?_9 polli): DEGACE set, but the target did not end up in the
halted stated 1

User: target.c:436 target_process_reset () : Timed out waiting for halt after reset

Flash Programming Finished.

‘Writable Smart Insert: 101

AT91SAM7 Serial Communications

91 Of 91

	Preface
	Introduction
	Universal Synchronous Asynchronous Receiver Transmitter
	Theory of Operation
	Baud Rate Generation
	Steps to Make USART0 Ready-to-Run
	Turn on the USART0 Peripheral Clock
	Give the USART0 Peripheral Control of the Pins
	Set Up the USART0 Registers
	Control Register - Reset then Disable the Receiver/Transmitter
	Mode Register – Set up Character Format, etc.
	Interrupt Enable Register – Enable Desired USART0 Interrupt	
	Interrupt Disable Register – Disable Desired USART0 Interrupt	
	Baud Rate Generator Register – enter baud rate clock divider
	Set Up the USART0 Registers that are not Used

	Setting Up the Advanced Interrupt Controller (AIC)
	Final Preparations for USART0 Interrupt Processing
	Assembly Language Part of the IRQ Handler
	Designing the USART0 IRQ Handler
	Flowchart – USART0 Interrupt Handler
	Project Listings – Interrupt Version
	AT91SAM7X256.H
	BOARD.H
	CRT.S
	ISRSUPPORT.C
	Lowlevelinit.c
	Main.c
	Usart0_isr.c
	Usart0_Setup.c
	Demo_sam7x256.cmd
	Makefile
	Openocd_program.cfg
	Openocd.cfg
	Script.ocd

	Building the Project
	Adding an LED to the Olimex SAM7-EX256 Board
	Programming the Sample Application into Flash
	Testing the Interrupt Driven Application
	Direct Memory Access
	USART0 DMA Registers
	USART0 PDC Receive Pointer Register
	USART0 PDC Receive Counter Register
	USART0 PDC Transmit Pointer Register
	USART0 PDC Transmit Counter Register
	USART0 PDC Receive Next Pointer Register
	USART0 PDC Receive Next Counter Register
	USART0 PDC Transmit Next Pointer Register
	USART0 PDC Transmit Next Counter Register
	USART0 PDC Transfer Control Register
	Set Up for DMA Interrupts
	DMA Interrupt Handler

	Project Listings – DMA Version
	USART0_SETUP.C
	USART0_ISR.C

	Building the DMA Application
	Other Possibilities
	About the Author
	Appendix
	Download Yagarto Components
	Install the YAGARTO Components
	Install OpenOCD
	Install Eclipse IDE
	Install YAGARTO GNU ARM Tool Chain
	Install YAGARTO Tools
	Install the JTAG Device Drivers

	Start Up Eclipse
	Create an Eclipse Standard C Project
	Import the Sample Project Files
	Build the Project
	Set Up a Second Make Target for Flash Programming

