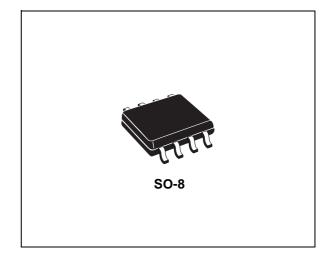
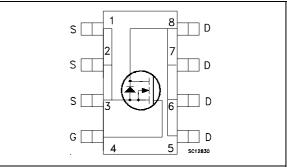


N-CHANNEL 30V - 0.0032 Ω - 25A SO-8 STripFET™ III MOSFET FOR DC-DC CONVERSION

TYPE	V _{DSS}	R _{DS(on)}	ID
STS25NH3LL	30 V	<0.0035 Ω	25 A


- TYPICAL R_{DS}(on) = 0.0032 Ω @ 10V
- OPTIMAL R_{DS}(on) x Qg TRADE-OFF @ 4.5V
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED

DESCRIPTION


The STS25NH3LL utilizes the latest advanced design rules of ST's propetary STripFETTM technology. This novel 0.6µ process coupled to unique metalization techniques re alizes the most advanced low voltage MOSFET in SO-8 ever produced. It is therefore suit able for the most demanding DC-DC converter applications where high efficiency is to be achived at high output current.

APPLICATIONS

- DC-DC CONVERTERS FOR TELECOM AND NOTEBOOK CPU CORE
- SYNCHRONOUS RECTIFIER

INTERNAL SCHEMATIC DIAGRAM

Ordering Information

er der nig miter mattern			
SALES TYPE	MARKING	PACKAGE	PACKAGING
STS25NH3LL	S25NH3LL	SO-8	TAPE & REEL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V _{GS}	Gate- source Voltage	± 18	V
I _D	Drain Current (continuous) at $T_C = 25^{\circ}C$	25	А
I _D	Drain Current (continuous) at T _C = 100°C	18	А
I _{DM} (●)	Drain Current (pulsed)	100	А
E _{AS} (1)	Single Pulse Avalanche Energy	200	mJ
Ptot	Total Dissipation at $T_C = 25^{\circ}C$	3.2	W
Pulse width	limited by safe operating area.	⁽¹⁾ Starting $T_j = 25 \circ C$ $I_D = 12.5A$ $V_{DD} = 30V$	

September 2003

THERMAL DATA

(*) When Mounted on 1 inch² FR-4 board, 2 oz of Cu and t \leq 10 sec.

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \text{ °C}$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, V_{GS} = 0$	30			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 18 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 12.5 A I _D = 12.5 A		0.0032 0.004	0.0035 0.005	Ω Ω

DYNAMIC

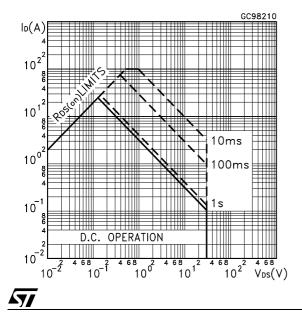
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} = 10 V I _D = 12.5 A		30		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		4450 655 50		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

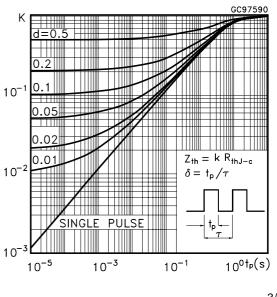
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			18 50		ns ns
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} =15V I _D =25A V _{GS} =4.5 V (see test circuit, Figure 2)		30 12.5 10	40	nC nC nC

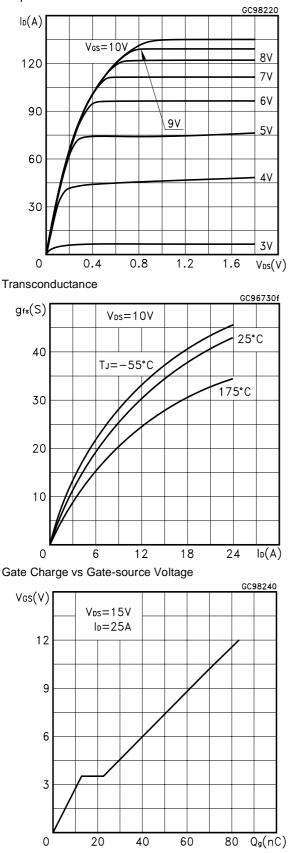
SWITCHING OFF

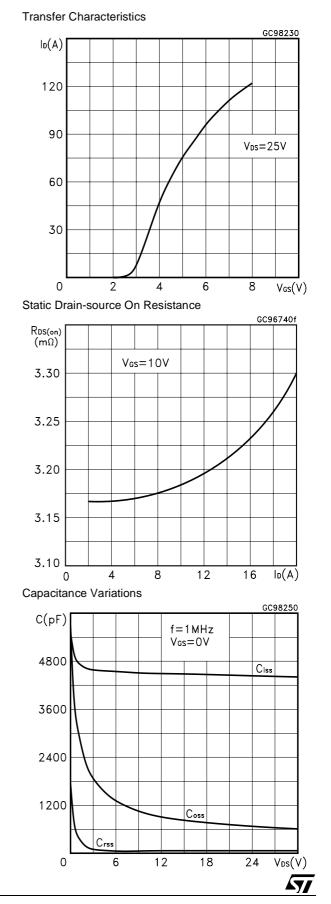

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$\label{eq:VDD} \begin{array}{l} V_{\text{DD}} = 15 \ V \\ R_{\text{G}} = 4.7 \Omega, \\ (\text{Resistive Load}, \end{array}$	I _D = 12.5 A V _{GS} = 10 V Figure 3)		75 8		ns ns

SOURCE DRAIN DIODE

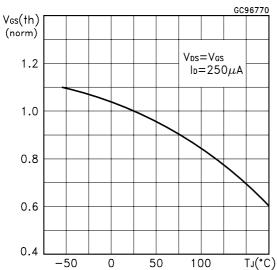

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)					25 100	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 25 A	$V_{GS} = 0$			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 25 \text{ A}$ $V_{DD} = 25 \text{ V}$ (see test circuit	di/dt = 100A/µs T _j = 150°C it, Figure 3)		32 34 2.1		ns nC A

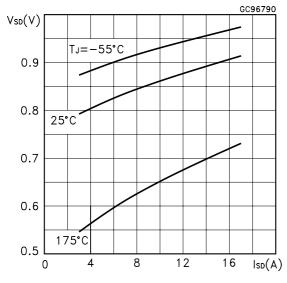
(*)Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.


Safe Operating Area

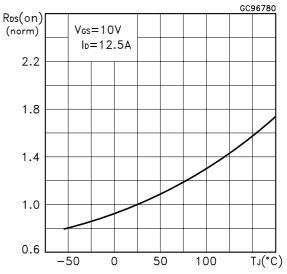


Thermal Impedance

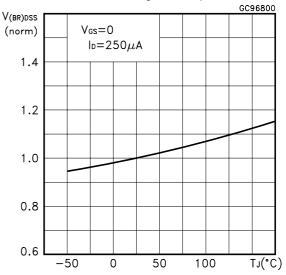




4/8



Normalized Gate Threshold Voltage vs Temperature


Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature.

Fig. 1: Switching Times Test Circuits For Resistive Load

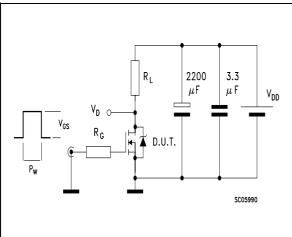
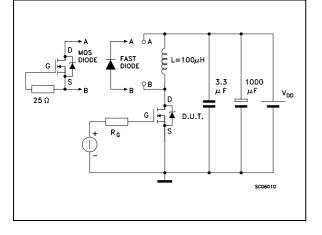
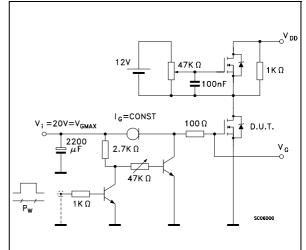
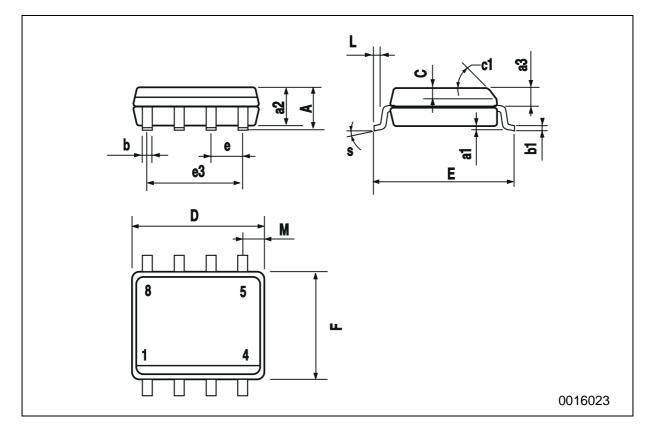




Fig. 3: Test Circuit For Diode Recovery Behaviour


Fig. 2: Gate Charge test Circuit

57

DIM.		mm			inch	
Dilwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45	(typ.)		
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8 (1	max.)		

SO-8 MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com