
SMEEPROM

Interface
Specifications for
the Smart Media

EEPROM

Last Updated: September 2, 2003

1 Overview

This document was written to explain the interface and
protocol requirements for the SMEEPROM Smart Media
Electronic Erasable Programmable Read Only Memory.
Please report typos, inaccuracies, and especially unclear
explanations to us at spark@sparkfun.com. Suggestions
for improvements are welcome and greatly valued.

This documentation is meant for general users includ-
ing students, hobbyists, and professionals who are famil-
iar with micro-controllers (PIC, AVR, MCP) and micro-
processors (Motorola 8051, Intel x86).

This document has three parts: Section 2 describes
the RS232 requirements between the SMEEPROM and
various external devices. Section ?? describes the hard-
ware layout and physical dementions of the SMEEPROM
device. and Section ?? gives some general applications
and pseudo-code examples.

It’s assumed that users are familiar with microcon-
trollers/microprocessors and the complexities involved
with interfacing them to external devices.

1.1 Boat loads of memory

The entire point of creating the SMEEPROM was be-
cause we needed EEPROM type memory for our projects
- and lots of it. While smart media was exteremly cheap
($16 for 64Mb at the time of writing), it was incredibly
hard to find good interface hardware (the physical socket)
and the software (example control code) for such mem-
ory. Luckily, students have been hacking away at Smart
Media Cards for years.

Using the SSFDC forum (http://www.ssfdc.or.jp/),
and the senior design project report by student Chris
Morley (Morley Electronics) provided a wealth of infor-
mation both to the physical and logical layers of the
SSFDC (Smart Media) format.

2 Interface Specifications

This section describes the nature of the interface between
the SMEEPROM and the controling device.

2.1 How To Talk

All transmissions occur at 9600bps with 1
start bit, 1 stop bit, and no parity.

While there is only one protocol supported currently
(RS232), there are plans for I2C and SPI interfaces in
the near future. RS232 9600 baud was chosen for its uC
and uP independance. If you’ve got a hardware UART,
USART, EUART on your micro, or if you can fake it with
software (we do!), then you can talk to the SMEEPROM.

You must tell the SMEEPROM what to do, and where
to do it. An example conversation can be found here 1.

FFFF is the 4-bit command (see below). AAA is the 26-
bit absolute address. DDD is the 8-bit data to be stored.
The header byte #0 (0xD4) and the terminator byte #6
(0x4A) must be included around every transmission. The
SMEEPROM uses these as error and transmission detec-
tion bytes. Byte 0 must be transmitted first followed by
the rest of the conversation, ending with the terminator
byte.

2.2 Storage Space

Smart Media memory is broken into various blocks,
pages, bytes, and pointers. But you don’t have to worry
about any of that! The 26-bit address contained in the
conversation is an absolute address. The controller takes
care to split the transmitted address (your address) into
the specific block, page, byte, and pointer where your
data will reside. This makes sequential storage very easy.

c© 2003 www.sparkfun.com 1

http://www.ssfdc.or.jp/
http://www.morleyelectronics.com
http://www.sparkfun.com

SMEEPROM

Simply increment two 16-bit or one 32-bit counter and
use it as the next available storage location.

Because of the nature of the memory (NAND Flash),
there are different ways of writing to a given memory po-
sition. All Smart Media is NAND Flash. Flash means
that it can be erased and written to many (100,000) times
before it will begin to fail. The NAND part means that
new data is ANDed together with the current data when
a store command is initiated. If you’ve got 0x00 stored at
location 0x1234 and you try to write a byte 0xAA to that
spot, (0xAA & 0x00 = 0x00) nothing will be stored. A
blank memory position is 0xFF. Anything ANDed with
0xFF is that thing (0xAA & 0xFF = 0xAA).

The only way to ”‘erase”’ a position in memory (re-
turn it to 0xFF) is to do a block erase (32 pages x 512
bytes per page = 16k must be erased in one hitch). Be-
cause of this limitation, the onboard controller was de-
signed to be able to handle single byte edits. It does
this by copying the entire block to a temporary loca-
tion, omitting the single byte that needs to be changed,
and copying the entire block back to its original position.
While this may seem drastic, single byte edits take no
more than 190ms to complete.

There are things to consider when using the SMEEP-
ROM for an application. You will need to be certain not
to a ”‘write”’ to an area that already has stored data.
Both previously stored data and new data will be de-
stroyed.

2.3 Command Overview

Here is a list of the different commands currently recog-
nized by the SMEEPROM. The SMEEPROM will rep-
sond to each command with a response byte 0b.—-.1010
where —- is the given command. All commands must be
included in the 4-bit command section of byte #1 of the
conversation.

1. Status - 0000 : The SMEEPROM will respond
with a single byte (0x0A) if it is available for in-
terviews. Otherwise, it is in the middle of an edit
or block erase and can not (will not) be bothered.
Execution time - 400us. Use this command to poll
the SMEEPROM before initiating a conversation.

2. Read - 0010 : The SMEEPROM will look up the
byte located at the given address and return an ac-
knowledge byte 0x2A followed by the value of the
retrieved byte. Response time - 400us. Each read
address is stored locally for multi-read commands
(see below). Before a multi-read command is ini-
tiated, a single normal read must be completed to
locate the starting point for the multi-read.

3. Write - 0110 : The SMEEPROM will store the
provided byte to the given address and return one
acknowledge byte 0x6A. Execution time - 400us.
If you attempt to write to a byte that already co-
tains data, both bytes will be anded together and
stored. ie, all ”‘blank”’ bytes are actually 0xFF.
When anded together, your data is stored.

4. Edit - 0100 : The SMEEPROM will store the pro-
vided byte to the given address and return one byte
0x4A upon successful completion. Execution time
- 180ms. The reason for such an extereme differ-
ence in execution time lies in the technology be-
hind Smart Media. Smart Media Cards are simply
chunks of flash NAND memory embedded in a thin
piece of plastic. It is impossible to change a single
location in memory. The entire block in which the
byte resides must be copied, erased, then copied
back with the single new byte in place. While the
controller takes complete care of the entire process,
be aware that editing is a very intense process and
will delay the controller in time sensitive applica-
tions. In other words, use the edit command for
special purposes and use the write command se-
quentially for raw data storage. Note: The edit
command uses the last available block in memory
as scratch area. This area in memory should be con-
sidered un-usable since any data written contained
in that location will be corrupt after the completion
of an ’Edit’ command.

5. Block Erase - 1100 : The SMEEPROM will erase
the block that contains the provided address and re-
spond with a single byte (0xCA) upon completion.
Execution time - 1.9ms. Use this command to for-
mat (restore to 0xFF values) an area of the card
before a sequential write.

6. Next Open Spot - 1000 : On boot up, the
SMEEPROM will attempt to determine the next
available free position and stores this address to
memory. Upon receipt of the NOS command, the
SMEEPROM will respond with five bytes. The first
byte (0x8A) will be followed by four bytes that
makeup the absolute address. For example (see Ta-
ble 2).

Where byte #1 is the most significant byte of the
26-bit absolute address. The NOS address is up-
dated with every write command. That is to say,
if there is a write to a random section of memory,
the NOS address will start from that address.

c© 2003 www.sparkfun.com 2

http://www.sparkfun.com

SMEEPROM

7. Multi-Write - 1110 : Used for sequential writes
to memory. Only four bytes must be transmitted to
the SMEEPROM - No address is transmitted. Us-
ing the NOS address, the SMEEPROM will write
the provided data byte to the next available posi-
tion in memory. Upon receipt of the Multi-Write
command, the SMEEPROM will respond with a
single byte (0xEA) upon completion. A multi-
write conversation is shorter than a standard write
conversation:

Byte# 0 1 2 3
Bit 76543210 76543210 76543210 76543210
Function 11010100 1110---- DDDDDDDD 01001010

Where byte #0 and #3 are the header and termi-
nator bytes respectively. Byte #1 is the command
byte. And byte #2 is the data byte to be stored.

8. Multi-Read - 1010 : Used for sequential reads
from memory. Only three bytes must be trans-
mitted to the SMEEPROM - No address or data
bytes are transmitted. Using the last read ad-
dress, the SMEEPROM will return the next data
byte in memory. Upon receipt of the Multi-Read
command, the SMEEPROM will respond with two
bytes. The first byte (0xAA) is followed by the
data byte that has been read from memory. A
multi-read conversation is shorter than a standard
read conversation:

Byte# 0 1 2
Bit 76543210 76543210 76543210
Function 11010100 1010---- 01001010

Where byte #0 and #2 are the header and termi-
nator bytes respectively. Byte #1 is the command
byte. Before a multi-read command is initiated, a
single normal read must be completed to locate the
starting point for the multi-read. The multi-read
address is automatically advanced with each issued
command. The address is also advanced across all
pages, blocks, and pointers automatically. A se-
quential read of all 64Mb of memory is possible.

3 Hardware Layout

This section describes the physical nature of the SMEEP-
ROM. Everything is pretty self explanitory.

3.1 Physical Dimensions

The SMEEPROM is 1.66”’ by 2.06”’ with a maximum
depth of 0.60”’. The Smart Media socket is located on
the reverse side of the PCB. All Smart Media cards must
be inserted with the metal contacts facing toward the
PCB. There are four standard mounting holes of .130”’
diameter.

3.2 Power Requirements

There is a 3.3V regulator that provides a regulated supply
of power to the PIC controller and to the media card. Be-
cause of this regulation, a higher voltage supply (equal or
greater than 5V) must be applied to the board for proper
function. While the regulator may provide some protec-
tion, reversing the polarity of the power connections is
a very bad idea. Double check your connections before
power-on.

3.3 Screw Terminal Connections

There are two power connections and two communication
connections. The positive voltage terminal must have
atleast 5V applied. GND is power ground. RX is the
incoming information to the SMEEPROM. The RX port
should be connected to a TX port of the microcontroller.
TX is the outgoing information from the SMEEPROM.
The TX port should be connected to an RX port of the
microcontroller. The SPI connections (SCL, SDI, and
SDO) are currently unimplemented. All port pins should
operate within 3-6V.

3.4 DI1 Indicator LED

The red indicator LED (silkscreen designator DI1) is used
to communicate the state of the SMEEPROM. When the
SMEEPROM is powered, the DI1 LED will blink until
a successful command has been sent to and recognized
by the SMEEPROM. While not active, the LED will be
turned off. During any operation (read, write, edit, sta-
tus, etc), the LED will turn on until that operation is
complete.

3.5 JC1 ICSP Port

The JC1 Polarized header is used to program the PIC in-
circuit. Any of the popular Olimex Programmers (PG1,
PG2C, PG3B, and MCP) are capable of loading new
firmware onto the SMEEPROM. We welcome and en-
courage firmware suggestions and revisions. Build, com-
pile, and burn your own ’kernel’ onto the SMEEPROM.

c© 2003 www.sparkfun.com 3

http://www.sparkfun.com

SMEEPROM

The current version of the SMEEPROM firmware can be
found at www.sparkfun.com and all code is open sourced.

3.6 Schematics

The SMEEPROM schematics can be found at the ap-
pendix portion of this datasheet.

3.7 PCB Layout

The PCB is a straight forward two layer design. If you
can’t tell, we like to use the autorouter. If you need
the footprints for your own design, feel free to email us
spark@sparkfun.com.

4 Smart Media Card Considera-
tions

This section tells you what you need to know to pick the
right Smart Media Card for your specific application.

4.1 Warning!!

The SMEEPROM does low-level writes to the Smart Me-
dia Card. These means that after you have written to
the card, the card will NO LONGER BE READABLE
in digital cameras, in MP3 players, or anything else you
may use your Smart Media Card for. This is because the
CIS (Card Information Structure) is destroyed when you
record data to the first few blocks of memory. While this
is not a permanent alteration, it can be difficult to re-
cover the card. More info on card recovery can be found
here: http://www.digit-life.com/articles/smcrestore/.

4.2 Voltage Type

Do NOT use the old (pre-2000) version of the Smart Me-
dia Card. These cards operate at 5V and will operate
with finnicky results. The 5V cards can be identified by
a ’5V’ white marking on the card and having a notch on
the top left corner of the card when the metal pads are
showing. 3V cards have a notch on the upper right-hand
corner.

4.3 Card Size

It is very unlikely that we will ever see 256MB Smart
Media Cards because the defined standards do not allow
for anything past 128MB. The SMEEPROM currently
supports 8MB, 16MB, 32MB, 64MB, and 128MB cards.

4.4 Card Installation

Simply insert a Smart Media Card into the socket with
the metal pads towards the PCB. Insert all cards be-
fore power-up. Removal of a card after power-up is not a
problem. However, re-insertion should only be done after
a power-down so that the onboard controller can re-map
the available memory locations.

5 Schematics

5.1 Main

c© 2003 www.sparkfun.com 4

http://www.sparkfun.com
mailto:spark@sparkfun.com
http://www.digit-life.com/articles/smcrestore/
http://www.sparkfun.com

SMEEPROM

5.2 Power Regulation

5.3 SMC Socket

c© 2003 www.sparkfun.com 5

http://www.sparkfun.com

SMEEPROM

c© 2003 www.sparkfun.com 6

http://www.sparkfun.com

SMEEPROM

Table 1: An example conversation.

Byte# 0 1 2 3 4 5 6
Bit 76543210 76543210 76543210 76543210 76543210 76543210 76543210
Function 11010100 FFFF–AA AAAAAAAA AAAAAAAA AAAAAAAA DDDDDDDD 01001010

Table 2: Response from the Next Open Spot command.

Byte# 0 1 2 3 4
Bit 76543210 76543210 76543210 76543210 76543210

Function 10001010 ——AA AAAAAAAA AAAAAAAA AAAAAAAA

c© 2003 www.sparkfun.com 7

http://www.sparkfun.com

	Overview
	Boat loads of memory

	Interface Specifications
	How To Talk
	Storage Space
	Command Overview

	Hardware Layout
	Physical Dimensions
	Power Requirements
	Screw Terminal Connections
	DI1 Indicator LED
	JC1 ICSP Port
	Schematics
	PCB Layout

	Smart Media Card Considerations
	Warning!!
	Voltage Type
	Card Size
	Card Installation

	Schematics
	Main
	Power Regulation
	SMC Socket

