

DATA SHEET

- Complete Read/Write module excluding only antenna
- Supports ISO14443A
 Mifare® Classic 1K, Mifare® Classic 4K, Mifare® Ultralight
- UART Interface up to 115200bps
 I2C Interface up to 400 KHz
- Fast data transfer Contactless communication up to 106 KHz
- Secure Encrypted contactless communication
- Upgradeable
- Ideal for e-purse , secure access and fast data collection applications

2

1.	PIN INFORMATION	4
2.	INTRODUCTION	5
2.1	EVALUATION KIT – SM1013	5
3.	MIFARE® BRIEF TECHNICAL INFORMATION	6
4.	COMMUNICATION PROTOCOLS	7
4.1	UART	8
4.2	I2C	9
5.	COMMANDS & RESPONSES	11
5.1	RESET	11
5.2	READ FIRMWARE VERSION	11
5.3	SELECT TAG	12
5.4	SEEK FOR TAG	13
5.5	AUTHENTICATE	14
5.6	READ BLOCK	15
5.7	READ VALUE BLOCK	16
5.8	WRITE BLOCK	17
5.9	WRITE VALUE BLOCK	18
5.10	WRITE 4 BYTE BLOCK	19
5.11	WRITE MASTER KEY	20
5.12	INCREMENT VALUE BLOCK	21
5.13	DECREMENT VALUE BLOCK	22
5.14	SET ANTENNA POWER	23
5.15	READ INPUT PORT	24
5.16	WRITE TO OUTPUT PORT	25
5.17	HALT TAG	26
5.18	SET BAUD RATE	27
5.19	SLEEP	28

6. PACKAGING INFORMATION		29
7. E	ELECTRICAL & PERFORMANCE SPECIFICATIONS	30
7.1	DC CHARACTERISTICS	30
7.2	OPERATING TEMPERATURE	30
7.3	ABSOLUTE MAXIMUM RATINGS	30
7.4	PERFORMANCE SPECIFICATIONS	30
8. S	SALES AND SERVICE INFORMATION	31

1. PIN INFORMATION

SM130 is a double layer, 28 pin DIP type module that is integrated with microcontroller, analog & digital signal processor IC and necessary passive components on both top and bottom layer to complete a fully functional ISO14443A Mifare® Classic read/write module.

Note: Please connect RFGND and GND pins externally. There is no internal connection between these two types of ground pins

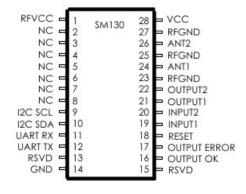


Figure 1 - SM130 PinOut View

Pin #	Pin Name	Description
1	RFVCC	5V Supply Voltage – should be connected VCC pin externally
2	NC	No Connection
3	NC	No Connection
4	NC	No Connection
5	NC	No Connection
6	NC	No Connection
7	NC	No Connection
8	NC	No Connection
9	I2C SCL	I2C Clock
10	I2C SDA	I2C Data
11	UART RX	UART RX pin of SM130 (0 – 5V CMOS)
12	UART TX	UART TX pin of \$M130 (0 – 5V CMO\$)
13	RSVD	Reserved. Do not connect this pin
14	GND	Ground
15	RSVD	Reserved. Do not connect this pin
16	OUTPUT OK	Status Pin .If High communication established with Mifare® tag successfully
17	OUTPUT ERROR	Status Pin .If High communication could not be established with Mifare® tag successfully
18	RESET	Hardware Reset pin. If this pin held high SM130 will be in reset mode. A short logic high (pulse) will reset SM130
19	INPUT1	TTL Input pin. Its status can be access ed via UART or I2C bus. Not mandatory for Mifare® applications just there to expand inputs of a complete system
20	INPUT2	TTL Input pin. Its status can be access ed via UART or I2C bus. Not mandatory for Mifare® applications just there to expand inputs of a complete system
21	OUTPUT1	TTL Output pin. It can be written logic 0 or logic 1 via UART or I2C bus. Not mandatory for Mifare® applications just there to expand outputs of a complete system
22	OUTPUT2	TTL Output pin. It can be written logic 0 or logic 1 via UART or I2C bus. Not mandatory for Mifare® applications just there to expand outputs of a complete system
23	RFGND	Ground - Should be connected to ground externally and for better performance can be connected to antenna ground plane
24	ANT1	Antenna Pin to drive and demodulate. Should be connected to one of the symmetrical antenna/inductor end
25	RFGND	Ground - Should be connected to ground externally and for better performance can be connected to antenna ground plane
26	ANT2	Antenna Pin to drive and demodulate. Should be connected to one of the symmetrical antenna/inductor end
27	RFGND	Ground - Should be connected to ground externally and for better performance can be connected to antenna ground plane
28	VCC	5V Supply Voltage – should be connected VCC pin externally

Table 1 – SM130 Pin Information

2. INTRODUCTION

SM130 is a compact 13.56MHz RFID Read / Write module designed for ISO14443A standard and supports Mifare® Classic 1K, Mifare® Classic 4K and Mifare® Ultralight transponders. It is controlled by external device over UART and/or I2C bus with simple protocols defined in this sheet. It has 2 general purpose inputs and 2 general purpose outputs to expand I/O count of a system and can be used to read switches and to control relays , lamps etc. SM130 can be easily and quickly integrated into RFID applications with very less effort.

Mifare® Classic is a secure memory (1Kbyte, 4KByte) chip/card often called contactless smart card. The reason it is called smartcard is because it has increment and decrement functions designed for especially payment systems. Mifare® Classic family of tags is being used in RFID applications where very high security and fast data collection systems are required. This family of tags has contactless communication speed up to 106 KHz and uses very strong encryption techniques. It is impossible to copy or modify the content of the Mifare® Classic family of tags without the correct key(s) when it is protected. As a result Mifare® become ideal for e-money applications, secure access, data storage and fast data collection systems. Not only limited with these applications but printed antenna technology makes possible to find very thin and low cost Mifare® tags (e.g. labels, stickers) so that extending the field of RFID applications.

Mifare® Ultralight differs from Mifare® Classic family. It has 512 bits memory and the contactless communication is not encrypted. However it has anti-cloning support by unique 7 byte serial number of each device.

2.1 EVALUATION KIT – SM130-EK

SM130-EK is a professional evaluation kit for SM130 modules. SM130-EK evaluation kit can be used to develop your application quickly or it can simply demonstrate main features of the SM130 module. SM1013 can be also used as Mifare® Programmer / Reader.

Designers can develop or evaluate their own specific application with the kit. Kit can be either connected to PC thru serial port (or USB-Serial converter) or any other peripheral device thru UART or I2C interface. SM1013 provides PC connectivity, 2+2 I/O pins and I2C pins for SM130 modules.

SMRFID Mifare® Software makes easy to start with SM1013 evaluation kit. Software provides Mifare® Programmer / Writer , Mifare Reader® features as well as setting configuration parameters of SM130 modules.

SM130-EK evaluation kit communicates with PC by RS232 (DB9 jack) serial port at different baud rates from 9600bps to 115200bps (19200bps default)

For a very quick and painless start we recommend you to buy a low cost SM130-EK Evaluation kit.

For latest Documentation & Software, Go Support>13.56 MHz at http://www.sonmicro.com

For Online Store:

http://www.sonmicro.com/en/onlinestore

MIFARE® BRIEF TECHNICAL INFORMATION 3.

For Mifare® tag memory organization and communication principles please refer to SM130 User Manual document. For deeper details refer to m001051.pdf document (Standard Card IC MF1 IC S50) of Philips Semiconductor. Mentioned document gives functional specification of the IC used in Mifare® 1K tags. Same communication principles are valid for Mifare® 4K (MF1 IC S70) tags. Documents can be downloaded at http://www.sonmicro.com/1356/d1356.php

> POR Select is required again if tag had left the RF field or halted **SELECT** Authentication required if sector or access condition is changing **AUTHENTICATE** No need to authenticate again if sector is not changing provided that the block(s) has same access conditions with previous operations MEMORY OPERATIONS Read Write Increment Value Decrement Value

Communication principles are greatly simplified by SM130 module as follows:

Figure 2 – Flow diagram to perform operations on Mifare® tag

The following sequence of operations has to be performed to access any block in the tag.

- 1 The tag should be selected with the serial number.
- 2 The relevant Sector should be authenticated with the relevant key. For example, if a block has to be read and if the access condition of the block is KevB, then the sector should be authenticated using KeyB
- 3 After the authentication, the required operation may be performed on the block of the authenticated sector. The operation will be allowed only if the access conditions for the block allow this. For example, if a block has Read condition using KeyB and write condition using KeyA/B then authenticating using KeyA will only allow a write operation. If a read is attempted the tag will halt and will not grant any further access. For accessing the tag further, it has to be again selected and authenticated. Also, only the sector that has been authenticated may be accessed. For example, if Sector 1 has been authenticated to access Block6 and if Block 9 is accessed, the tag will halt.

4. COMMUNICATION PROTOCOLS

SM130 have two communication interfaces; UART and I2C. Commands are kept same for both protocols but communication frames are different.

The following table lists the commands supported by SM130 module and the corresponding code. Commands are valid for both UART and I2C protocols.

Code	Command	Description
0x80	Reset	Resets the Module
0x81	Firmware	Reads the Firmware Revision of the Module
0x82	Seek for Tag	Continuously checks for presence of a tag
0x83	Select Tag	Selects a Tag
0x84	NA	Not Implemented
0x85	Authenticate	Authenticates the selected Block
0x86	Read Block	Reads from the specified Block
0x87	Read Value	Reads from a Value Block
0x88	NA	Not Implemented
0x89	Write Block	Writes the data to the specified block
0x8A	Write Value	Formats and Writes a Value block
0x8B	Write 4 Byte Block	Writes 4 byte data to Mifare Ultralight block
0x8C	Write Key	Writes the Key to the EEPROM of the MFRC530
0x8D	Increment	Increments a value block
0x8E	Decrement	Decrements a value block
0x8F	NA	Not Implemented
0x90	Antenna Power	Switches ON or OFF the RF field
0x91	Read port	Reads from the Input port
0x92	Write Port	Writes to the Output port
0x93	Halt	Halts the PICC
0x94	Set Baud Rate	Sets the new baud rate
0x95	NA	Not Implemented
0x96	Sleep	This command puts \$M130 in sleep mode

Table 5 – Commands to control SM130 module.

4.1 UART

The communication between the host and the module can take place at 9600bps, 19200bps, 38400bps, 57600bps or 115200bps N, 8, 1. Module communicates at 19200bps,N,8,1 as default. Once the baud rate is changed using the Change baud rate command, successful communication will only occur with the new baud rate.

The host first sends the command and the module executes the operation and replies with a response to the command. The host can analyze the reply to check if the operation was successful or if any error occurred during the operation.

Following is the UART frame for the commands sent by the host:

Header	Reserved	Length	Command	Data	CSUM
1 Byte	1 Byte	1 Byte	1 Byte	N Bytes	1 Byte

Table 6 - UART frame send by Host

- 1. **Header:** This is a single byte that indicates the beginning of a frame. This byte should be always 0xFF
- 2. **Reserved:** This byte is reserved for future use and not implemented currently. It has to be always 0x00
- 3. Length: This byte is used to indicate the length of the payload data. This includes the Command and the Data bytes
- 4. Command: This byte is used to instruct the module on what operation to perform
- **5. Data:** These are parameters necessary for the module to execute the command. For example, for a Read command, the data will be the block number to be read. For a Write command, this will be the block number and 16 bytes of data.
- **6. CSUM:** This is the checksum byte. This byte is used on the host as well as the module to check the validity of the packet and to trap any data corruption. This is calculated by adding all the bytes in the packet except the Header byte

Following is the UART frame for the response packets sent by SM130 module in response to the commands:

Header	Reserved	Length	Command	Response	CSUM
1 Byte	1 Byte	1 Byte	1 Byte	N Bytes	1 Byte

Table 7 – UART frame send by SM130 module

- Header: This is a single byte that indicates the beginning of a frame. This byte will be always 0xFF
- 2. Reserved: This byte is reserved for future use and not implemented currently. It is 0x00
- 3. Length: This byte is used to indicate the length of the payload data.
- **4. Command:** This is the command for which the response is being sent back. The host can use this byte to verify that the received response is for the command it sent.
- 5. Response: This contains the result data if an operation was successful or the error code if the operation was not successful. The status of the operation can be found by the length of the data bytes. For example, if the data length is 16 when a read command is executed it means that the operation was successful. If the data length is 1, then it means that the read was not successful and the nature of the error can be found out by analyzing the Error code sent, which is the single data byte
- 6. CSUM: This is the checksum byte. This is the sum of all bytes except the Header byte

4.2 I2C

Apart from the UART, SM130 module supports I2C interface. SM130 module functions as an I2C slave. The address of the I2C slave is 0x42. The slave can support clock rates of 50 KHz, 100 KHz and 400 KHz.

Please notice that; For I2C operation, module firmware needs to be upgraded with version I2C 2.2 or later. (Standard modules come with UM 1.X firmware programmed in factory that does not support I2C). Upgrade is free, easy to implemet and can be requested at support@sonmicro.com. Please also visit http://www.sonmicro.com/forum for useful I2C examples and discussions

The following is the I2C frame of the data packets sent by the I2C Master:

Length	Command	Data	CSUM
1 Byte	1 Byte	N Bytes	1 Byte

Table 8 - I2C frame send by I2C Master Device

- 1. **Length:** This byte is used to indicate the length of the payload data. This includes the command and the data bytes.
- 2. Command: This byte is used to instruct the module on what operation to perform
- **3. Data:** These are parameters necessary for the module to execute the command. For example, for a Read command, the data will be the block number to be read. For a Write command, this will be the block number and 16 bytes of data.
- **4. CSUM:** This is the checksum byte. This byte is used on the host as well as the module to check the validity of the packet and to trap any data corruption. This is calculated by adding all the bytes in the packet.

As soon as the module receives the complete command frame, it starts executing the command. When the module executes the command, if the Master reads from the module, the value returned will be 0x00. When the command execution is complete, the length of response will be returned. Once the Master knows the length of response, it should read the further response.

Following is the I2C frame of the data packets sent by SM130 module in response to the commands:

Length	Command	Response	CSUM
1 Byte	1 Byte	N Bytes	1 Byte

Table 9 – I2C frame send by SM130 module (Slave)

- Length: This byte is used to indicate the length of the payload data. The master should first analyze this byte and then consequently read the number of bytes indicated by this byte.
- 2. Command: This is the command for which the response is being sent back
- 3. Response: This contains the result data if an operation was successful or the error code if the operation was not successful. The status of the operation can be found by the length of the data bytes. For example, if the data length is 16 when a read command is executed, it means that the operation was successful. If the data length is 1, then it means that the read was not successful and the nature of the Error can be found out by analyzing the Error code sent, which is the single data byte. The details of the response length and error codes for each command can be found in the next section.
- **4. CSUM:** This is the checksum byte. This is the sum of all bytes.

Following is the logic the Master should follow to send a command over I2C

- 1. Send I2C command as per above protocol
- 2. Send Start
- 3. Read a single byte from the module. This byte is the length of the response that the module is going to send. This will be zero, till the module completes the execution of the command. If the read byte is zero, send a stop.
- 4. Repeat steps 2 and 3 till the "length of response" byte is non-zero.
- 5. When the length byte is non-zero, instead of sending a stop, read the number of data bytes indicated by the response length.
- 6. Send Stop.
- 7. After reading all the bytes, verify the checksum of the received packet

5. COMMANDS & RESPONSES

In this chapter detailed information and UART frame examples are given for command and responses.

5.1 RESET

This command generates software reset on the module.

Command:

Command	0x80
Data	None

Table 10 – Reset Command

Response:

The module responds with a version string to the reset command. The response is the same as the one found in the Read Firmware Version Command

Example Command:

FF 00 01 80 81 Reset SM130 module

Example Response:

FF 00 04 81 30 2E 31 14 - Version is 0.1

5.2 READ FIRMWARE VERSION

This command reads the firmware version of the module

Command:

Command	0x81
Data	None

Table 11 – Read Firmware Version Command

Response:

The module responds with a version string to this command.

Example Command:

FF 00 01 81 82

Example Response:

FF 00 04 81 30 2E 31 14 - Version is 0.1

5.3 SELECT TAG

This command Selects a Tag if it is present in the field. On receiving the command, the module executes an Anti-collision and Select command sequences. If a tag was present, then it selects the tag and sends the serial number of the tag as response. If a tag was not present, it sends an error code back.

Command:

Command	0x83
Data	None

Table 12 – Select Command

Response:

If a tag was selected, the response data length is 6 or 9 bytes. The first byte is the command byte (0x83) and the next is the Tag Type and the next 4 bytes / 7 bytes are the tag serial number MSB first. The serial number is 4 bytes for Mifare 1K and 4K tags and 7 bytes for Mifare Ultralight tags.

Data Length	0x06 or 0x09
Command/Response	0x83
Тад Туре	1 Byte 0x01 – Mifare Ultralight 0x02 – Mifare Standard 1K 0x03 – Mifare Classic 4K 0xFF – Unknown Tag type
Serial Number	4 Byte / 7 Byte Serial Number, 1st byte is the MSB

Table 13 – Response to Select Command

If no tag was present, the data length is set to 1 and the Error code returned is 'N' If RF Field is OFF, the data length is set to 1 and the Error code returned is 'U'

Data Length	0x02	
Command/Response	0x83	
Error Code	0x4E 0x55	'N' - No Tag present. 'U' – Access failed due to RF Field is OFF

Table 14 - Response to Select Command

Example Command:

FF 00 01 83 84 Select Tag

Example Response:

FF 00 06 83 01 39 0D 4C D2 EE Mifare @ 1K tag selected, Serial Number 390D4CD2

FF 00 02 83 4E D3 No Tag present

5.4 SEEK FOR TAG

This command seeks and selects a Tag as soon as the tag presents in the field. On receiving the command, the module executes an Anti-collision and Select command sequences. As soon as the tag enters into the RF field, then module selects the tag and sends the serial number of the tag as response.

Command:

Command	0x82
Data	None

Table 15 - Seek For Tag Command

Response:

When this command is executed and immediate response arrives as in Table 16 to show that Seek For Tag command is in progress or failed.

Data Length	0x02	
Command/Response	0x82	
Error Code	0x4C 0x55	'L' – Command in progress. 'U' – Command in progress but RF Field is OFF

Table 16 – Response to Seek For Tag Command

As soon as a tag enters into the RF field it is selected and the response data length is 6 or 9 bytes according to tag type. The first byte is the command byte (0x82) the second is the Tag Type and the next 4 bytes / 7 bytes are the tag serial number MSB first. The serial number is 4 bytes for Mifare 1K and 4K tags and 7 bytes for Mifare Ultralight tags.

Data Length	0x06 or 0x09
Command/Response	0x82
Tag Type	1 Byte 0x01 – Mifare Ultralight 0x02 – Mifare Standard 1K 0x03 – Mifare Classic 4K 0xFF – Unknown Tag type
Serial Number	4 Byte / 7 Byte Serial Number, 1st byte is the MSB

Table 17 – Response to Seek For Tag Command

Example Command:

FF 00 01 82 83 Seek for Tag

Example Response:

Response 1: FF 00 02 82 4C D0 Command is being executed.

(Module waits here for a tag to enter into the RF Field)

Response 2: FF 00 06 82 02 D4 5A 8D 55 9A Mifare ® 1K tag selected, Serial Number 558D5AD4

5.5 AUTHENTICATE

This command authenticates the specified block with the specified Key type and Key sequence. If Authentication fails then the Select Tag operation should be repeated to authenticate again.

Command:

Command	0x85
Block Number	1 Byte – Block number to be authenticated
	Byte – Option byte that instructs the module which type of key to be used for authentication
	OxAA: Authenticate with Key type A OxBB: Authenticate with Key type B
Кеу Туре	0xFF: Authenticate with Key type A and transport key FF FF FF FF FF
	0x10 to 0x1F: Authenticate with Key type A using the key stored in the SM13X module's E2PROM (0 to 15)
	0x20 to 0x2F: Authenticate with Key type B using the key stored in the SM13X module's E2PROM (0 to 15)
Key	6 Bytes – Key to be used for authentication.

Table 18 - Authenticate Command

Response:

Data Length	0x06
Command/Response	0x85
Status / Error Code	1 Byte – Status / Error code 0x4C

Table 19 – Response to Authenticate Command

Example Command:

FF 00 03 85 01 FF 88

Authenticate Block 0x01 with transport key FF FF FF FF FF

FF 00 09 85 05 AA 11 23 43 FC 97 CD 14

Authenticate Block 0x05 with key type A, and Key 11 23 43 FC 97 CD

FF 00 03 85 02 11 9B

Authenticate Block 0x02 with Key type A from the SM130's internal EEPROM sector number 0x01

FF 00 03 85 02 23 AD

Authenticate Block 0x02 with key type B from the SM130's internal EEPROM sector number 0x03

Example Response:

FF 00 02 85 4C D3 Login Successful

FF 00 02 85 4E D5

No Tag present or Login Failed

5.6 READ BLOCK

This command reads 16 bytes from the specified block. Before executing this command, the particular block should be authenticated. If not authenticated, this command will fail.

Command:

Command	0x86
Block Number	1 Byte – Block Number to be read

Table 20 - Read Block Command

Response:

Success:

Data Length	0x12
Command/Response	0x86
Block Number	1 Byte – Block number that has been read
Data	16 Bytes – 16 bytes of data that have been read from the specified block

Table 21 – Response to Read Block Command

Fail:

Data Length	0x02
Command/Response	0x86
Eman Carda	1 Byte – Error Code
Error Code	0x4E 'N' – No Tag present 0x46 'F' – Read Failed

Table 22 – Response to Read Block Command

Example Command:

FF 00 02 86 06 8E

Read 16 bytes from Block 0x06

Example Responses:

FF 00 12 86 06 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 16 Read successful

FF 00 02 86 46 CE Read Failed

Note: When reading a Mifare UL tag, the first 4 bytes are from the block number specified. The next 12 bytes are from the consecutive blocks.

5.7 READ VALUE BLOCK

This command reads a value block. Value is a 4byte signed integer. Before executing this command, the block should be authenticated. If the block is not authenticated, this command will fail. Also, this command will fail if the block is not in valid Value format.

Command:

Command	0x87
Block Number	1 Byte – Block Number to be read

Table 23 - Read Value Block Command

Response:

Success:

Data Length	0x06
Command/Response	0x87
Block Number	1 Byte – Value Block number that has been read
Data	4 Bytes – Value read from the value block. LSB first

Table 24 – Response to Read Value Block Command

Fail:

Data Length	0x02
Command/Response	0x87
Error Code	1 Byte – Error Code 0x4E 'N' – No Tag present 0x49 'I' – Invalid Value Block 0x46 'F' – Read Failed

Table 25 – Response to Read Value Block Command

Example Command:

FF 00 02 87 08 91 Read Value from Block 0x08

Example Responses:

FF 00 06 87 08 10 27 00 00 CC Read Value is successful. The value read is 10000. (0x00002710)

FF 00 02 87 46 CF Read Failed

FF 00 02 87 49 D2 Invalid Value Block

5.8 WRITE BLOCK

This command writes 16 bytes to the specified block. Before executing this command, the particular block should be authenticated. If not authenticated, this command will fail.

Command:

Command	0x89
Block Number	1 Byte – Block Number to be written
Data	16 Bytes – 16 bytes of data to be written to the block.

Table 26 – Write Block Command

Response:

Success:

Data Length	0x12
Command/Response	0x89
Block Number	1 Byte – Value Block number that has been written
Data	16 Bytes – 16 bytes of data that have been read back after the write

Table 27 – Response to Write Block Command

Fail:

Data Length	0x01
Command/Response	0x89
Error Code	1 Byte – Error Code 0x55 'U' – Read after write failed (*) 0x58 'X' – Unable to Read after write (*) 0x4E 'N' – No Tag present 0x46 'F' – Write Failed

Table 28 – Response to Write Block Command

(*)After a block is written, it is read back and verified if the write was successful. If the data read back does not match the data written, the error will be "U". For example, while writing to sector trailer to update Key-A, the value read back will not match the value written. (Key A reads always 00 00 00 00 00 00) If the block that was written is read protected, then read will fail and the error code will be "X". If the write is successful and the data is successfully verified, then the same data that was written is sent back in the response packet.

Example Command:

FF 00 12 89 0A 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 1D Write 16 bytes data (00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F) to block 10

Example Responses:

FF 00 12 89 0A 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 1D Write successful

FF 00 02 89 58 E3 Unable to read after write.

FF 00 02 89 55 E0 Read after write failed

5.9 WRITE VALUE BLOCK

This command formats and then writes a value block. Value is a 4byte signed integer. Only the 4-byte value and block number need to be sent to the module. The module formats the value block and then writes. After writing, the Value block is read back to verify if the write was successful. Before executing this command, the block should be authenticated. If the block is not authenticated, this command will fail.

Command:

Command	0x8A
Block Number	1 Byte – Block Number to be written
Data	4 Bytes – 4 byte long int value. LSB first

Table 29 - Write Value Block Command

Response:

Success:

Data Length	0x06
Command/Response	0x8A
Block Number	1 Byte – Block number to which value has been written
Data	4 Bytes – Value that has been read back after the write.(LSB first)

Table 30 – Response to Write Value Block Command

Fail:

Data Length	0x02
Command/Response	0x8A
Error Code	1 Byte – Error Code 0x4E 'N' – No Tag present 0x49 'I' – Invalid Value Block. The block was not in the proper value format when read back. This could be because there was an error in writing 0x46 'F' – Read Failed during verification

Table 31 – Response to Write Value Block Command

Example Command:

FF 00 06 8A 08 10 27 00 00 CF Write value 10000(0x00002710) to block 8

Example Responses:

FF 00 06 8A 08 10 27 00 00 CF Write Value successful

FF 00 02 8A 4E DA No Tag present

5.10 WRITE 4 BYTE BLOCK

This command writes 4 bytes to the specified Mifare block. This command has been provided to write to Mifare Ultralight tags.

Command:

Command	Ox8B
Block Number	1 Byte – Block Number to be written
Data	4 Bytes – 4 bytes of data to be written to the block.

Table 32 – Write 4 Byte Block Command

Response:

Success:

Data Length	0x06
Command/Response	0x8B
Block Number	1 Byte – Value Block number that has been written
Data	4 Bytes – 4 bytes of data that have been read back after the write

Table 33 – Response to Write 4 Byte Block Command

Fail:

Data Length	0x01
Command/Response	0x8B
Error Code	1 Byte – Error Code 0x55 'U' – Read after write failed (*) 0x58 'X' – Unable to Read after write (*) 0x4E 'N' – No Tag present 0x46 'F' – Write Failed

Table 34 – Response to Write 4 Byte Block Command

After a block is written, it is read back and verified if the write was successful. If the data read back does not match the data written, the error will be "U". If the write is successful and the data is successfully verified, then the same data that was written is sent back in the response packet.

Example Command:

FF 00 06 8B 04 AA BB CC DD A3 Write 4 bytes data (AA BB CC DD) to page 4

Example Responses:

FF 00 06 8B 04 AA BB CC DD A3 Write successful

FF 00 02 8B 46 D3 Write failed

5.11 WRITE MASTER KEY

This command writes the Key to the internal EEPROM of the module. There are 16 key sectors in the module. Each sector can hold a TypeA and a TypeB key. The sectors are numbered from 0 to 15. The keys cannot be read back after a write. To check if the key write was successful, execute an authenticate command using the key from EEPROM.

Command:

Command	0x8C
Internal EEPROM	1 Byte – Key sector number where the keys has to be stored.
Sector Number	This can be 0x00 to 0x0F (Total of 16 sectors)
	1 Byte – Key Type to e stored I the specified sector
Кеу Туре	0xAA – Key is stored as TypeA
	OxBB - Key is stored as TypeB
Key	6 Bytes – Six byte Key (MSB first)

Table 35 – Write Master Key Command

Response:

The following single byte response is received from the module:

Data Length	0x02
Command/Response	0x8C
	1 Byte – Status / Error Code
Status / Error Code	0x4C 'L' – Write Master key successful 0x4E 'N' – Write Master key fail

Table 36 – Response to Write Master Key Command

Example Command:

FF 00 09 8C 06 AA 01 02 03 04 05 06 5A

Write key (01 02 03 04 05 06) as TypeA to sector 6 of the internal eeprom of the module.

FF 00 09 8C 06 BB 01 02 03 04 05 06 6B

Write key (01 02 03 04 05 06) as TypeB to sector 6 of the internal eeprom of the module.

Example Responses:

FF 00 02 8C 4C DA Write Key successful

FF 00 02 8C 4E DA Write Key failed

5.12 INCREMENT VALUE BLOCK

This command increments a value block with the specified amount. Before executing this command, the block should be authenticated. Also, the block should have permission for increment. If either of these conditions is not true, this command will fail. The 4-byte increment value should be sent LSB first. If the increment was successful, the 4-byte value after increment is sent back as response, LSB first.

Command:

Command	0x8D
Block Number	1 Byte – Block number to be incremented
Increment Value	4 Bytes – Increment value. (LSB first)

Table 37 - Increment Value Block Command

Response:

Success:

Data Length	0x06
Command/Response	0x8D
Block Number	1 Byte – Block number that has been incremented
Data	4 Bytes – Value after the increment. (LSB first)

Table 38 – Response to Increment Value Block Command

Fail:

Data Length	0x01			
Command/Response	0x8D			
Error Code	1 Byte – Error Code 0x4E 'N' – No Tag present 0x46 'F' – Read Failed during verification 0x49 'I' – Invalid Value black			

Table 39 – Response to Increment Value Block Command

Example Command:

FF 00 06 8D 08 E8 03 00 00 86 Increment Value Block 8 by 1000 (0x000003E8)

Example Responses:

FF 00 06 8D 08 F8 2A 00 00 BD Increment value block successful. New Value is 11000 (0x00002AF8)

FF 00 02 8D 46 D5 Increment failure

5.13 DECREMENT VALUE BLOCK

This command decrements a value block with the specified amount. Before executing this command, the block should be authenticated. Also, the block should have permission for decrement. If either of these conditions is not true, this command will fail. The 4-byte increment value should be sent LSB first. If the decrement was successful, the 4-byte value after decrement is sent back as response, LSB first.

Command:

Command	0x8E
Block Number	1 Byte – Block number to be decremented
Decrement Value	4 Bytes – Decrement value. (LSB first)

Table 40 - Decrement Value Block Command

Response:

Success:

Data Length	0x06
Command/Response	0x8E
Block Number	1 Byte – Block number that has been decremented
Data	4 Bytes – Value after the decrement. (LSB first)

Table 41 – Response to Decrement Value Block Command

Fail:

Data Length	0x01
Command/Response	0x8E
Error Code	Ox4E 'N' – No Tag present Ox46 'F' – Read Failed during verification
	0x49 'I' – Invalid Value block

Table 42 – Response to Decrement Value Block Command

Example Command:

FF 00 06 8E 08 E8 03 00 00 87 Decrement Value Block 8 by 1000 (0x000003E8)

Example Responses:

FF 00 06 8E 08 28 23 00 00 E7

Decrement value block successful. New Value is 9000 (0x00002328)

FF 00 02 8E 46 47 Decrement failure

5.14 SET ANTENNA POWER

This command turns ON or OFF the RF field. RF field can be switched off when it is not required. This helps to reduce the active current consumption. The RF field can be switched ON whenever a read or write operation is required.

Command:

Command	0x90
RF SWITCH	Byte – Byte to instruct the reader whether to switch ON or OFF the RF field Ox00 – Switch Off RF Field Non-Zero – Switch On RF Field

Table 43 – Set Antenna Power Command

Response:

Data Length	0x02		
Command/Response	0x90		
	1 Byte – RF field status after execution of the command		
Status	0x00 RF Field switched Off 0x01 RF Field switched On		

Table 44 – Response to Set Antenna Power Command

Example Command:

FF 00 02 90 00 92 Switch Off RF field

FF 00 02 90 01 93 Switch On RF field

Example Responses:

FF 00 02 90 00 92 RF field Switched Off

FF 00 02 90 01 93 RF field Switched On

5.15 READ INPUT PORT

This command reads the status of the 2 input Port pins. This command does not have any data field. SM130 module has 2 input pins that can be used for reading switches or other logic signals. On sending this command, the module returns a byte where Bit0 indicates the status of INPUT1 and Bit1 indicates the status of INPUT2.

Command:

_	
Command	0x91

Table 45 – Read Input Port Command

Response:

Data Length	0x02			
Command/Response	0x91			
	1 Byte – Status of input pins			
	BitO - Status of INPUTI. 1 - On, 0 - Off			
	Bit1 – Status of INPUT2. 1 – On, 0 – Off			
Status	Bit1	BitO		
	0	0	INPUT2 LOW, INPUT1 LOW	
	0	1	INPUT2 LOW, INPUT1 HIGH	
	1	0	INPUT2 HIGH, INPUT1 LOW	
	1	1	INPUT2 HIGH, INPUT1 HIGH	

Table 46 – Response to Read Input Port

Example Command:

FF 00 01 91 92 Read Input pins

Example Responses:

FF 00 02 91 00 93 INPUT2 LOW, INPUT1 LOW

FF 00 02 91 01 94 INPUT2 LOW, INPUT1 HIGH

FF 00 02 91 02 95 INPUT2 HIGH, INPUT1 LOW

FF 00 02 91 03 96 INPUT2 HIGH, INPUT1 HIGH

5.16 WRITE TO OUTPUT PORT

This command writes to the 2 output port pins. SM130 has 2 output pins that can be used to control loads. These can be used to switch On relays, lamps etc. or expand output pins of a complete system. These pins can source 10mA and sink 25mA. The module sets the output states according to the data sent. Bit0 of the data controls OUTPUT1 and Bit1 of data controls OUTPUT2.

Command:

Command	0x92				
	1 Byte -	1 Byte – Byte that indicates how the outputs have to be set			
	BitO - C	Bit0 – OUTPUT1. 1 – On, 0 – Off			
	Bit1 - C	Bit1 - OUTPUT2. 1 – On, 0 – Off			
Status					
	Bit1	BitO			
	0	0	OUTPUT2 LOW, OUTPUT1 LOW		
	0	1	OUTPUT2 LOW, OUTPUT1 HIGH		
	1	0	OUTPUT2 HIGH, OUTPUT1 LOW		
	1	1	OUTPUT2 HIGH, OUTPUT1 HIGH		

Table 47 – Write to Output Port Command

Response:

Data Length	0x02
Command/Response	0x92
	1 Byte – Status of output pins after the command execution
Status	BitO – Status of OUTPUT1. 1 – On, 0 – Off Bit1 – Status of OUTPUT2. 1 – On, 0 – Off

Table 48 – Response to Write to Output Port Command

Example Command:

FF 00 02 92 00 94 Switch Off both outputs

FF 00 02 92 01 95 Switch On Output1

FF 00 02 92 03 97 Switch On both outputs

Example Responses:

FF 00 02 92 00 94 Both outputs switched Off

FF 00 02 92 01 95 OUTPUT1 switched On

FF 00 02 92 03 97 Both outputs switched On

5.17 HALT TAG

This command executes a Mifare Halt command on the selected tag.

Command:

Command	0x93
Data	None

Table 49 – Select Command

Response:

Data Length	0x02	
Command/Response	0x93	
Error Code	0x4C 0x55	'L' – PICC(tag) is halted 'U' – PICC can not be halted due to RF Field is OFF

Table 50 – Response to Select Command

Example Command:

FF 00 01 93 94 Halt Tag

Example Response:

FF 00 02 93 55 EA PICC halted

5.18 SET BAUD RATE

This command sets the UART baud rate of the module. Once it is set module will be able to communicate with new baud rate even after POR. SM130 module operates at a default baud rate of 19200bps when shipped from the factory. As soon as this command is received, the module stores the new baud rate in its internal EEPROM and after a delay of 500ms transmit the response using the new baud rate.

Command:

Command	0x94						
Baud Rate	1 Byte – Determines the new baud rate 0x00 – 9600bps 0x01 – 19200bps 0x02 – 38400bps 0x03 – 57600bps 0x04 – 115200bps						

Table 51 – Set Baud Rate Command

Response:

Data Length	0x02
Command/Response	0x94
	1 Byte – Status / Error Code
Status/Error Code	0x4C 'L' – Change of Baud rate successful 0x4E 'N' – Change of Baud rate failed

Table 52 – Response to Set Baud Rate Command

Example Command:

FF 00 02 94 02 98 Set new baud rate to 38400bps

FF 00 02 94 03 99 Set new baud rate to 57600bps

Example Responses:

FF 00 02 94 4C E2 Baud rate changed successfully

FF 00 02 94 4E E4 Baud rate change operation failed

5.19 SLEEP

This command puts SM130 in sleep mode to reduce power consumption. The module switches off the RF field and enters a low power sleep mode. Only a hardware reset can bring the module out of the sleep state.

Command:

Command	0x96
Data	None

Table 53 – Sleep Command

Response:

Data Length	0x02
Command/Response	0x96
Error Code	0x00

Table 54 – Response to Sleep Command

Example Command:

FF 00 01 96 97 Sleep Commnad

Example Responses:

FF 00 02 96 00 98 Sleep OK

6. PACKAGING INFORMATION

Figure 3 – SM130 Perspective View

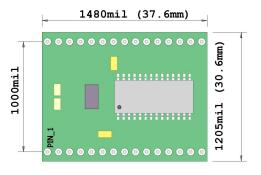


Figure 4 - SM130 Top View

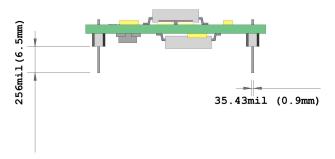


Figure 5 - SM130 Side View A

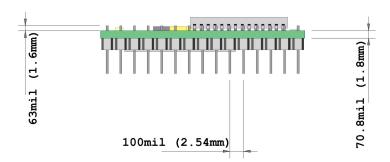


Figure 6 – SM130 Side View B

7. ELECTRICAL & PERFORMANCE SPECIFICATIONS

7.1 DC CHARACTERISTICS

Symbol	Description	Min	Тур	Max	Units	Notes
VCC	Supply Voltage	4.85	5.00	5.5	٧	
RFVCC	RF Supply Voltage	4.5	5	5.5	٧	
lo	Supply Current	-	180mA	-		Continuous Read Mode
Is	Sleep Current	-	30uA	-		Sleep Mode

Table 55 - DC Chacteristics

7.2 OPERATING TEMPERATURE

Symbol	Description	Min	Тур	Max	Units	Notes
TA	Ambient Temperature	-40	-	85	°C	
TJ	Junction Temperature	-40	-	100	°C	

Table 56 – Operating Temperature

7.3 ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Тур	Max	Units	Notes
TSTG	Storage Temperature	-55	-	100	°C	Higher storage temperatures will reduce data retention time
TA	Ambient Temperature	-40	-	85	°C	
VCC	Supply Voltage	-0.5	-	5.5	٧	
IMIO	Maximum Current into any Port Pin	-25	-	50	mA	
ESD	Electro Static Discharge Voltage	2000	-	=	٧	Human Body Model ESD

Table 57 – Absolute Maximum Ratings

7.4 PERFORMANCE SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Notes
Read Distance	-	8	9.5	cm	may change according to antenna specs.
Write Distance	-	8	9.5	cm	may change according to antenna specs

Table 58 – Performance Specifications

8. SALES AND SERVICE INFORMATION

To obtain information about SONMicro Electronics products and technical support, reference the following information.

SonMicro Electronics LTD. Cankaya M. Soguksu C. Aslihan Ishani 2/15 Mersin, 33070 TURKIYE

Phone: +90 324 237 21 28
Facsimile: +90 324 237 21 86
Email: info@sonmicro.com

Web Site: http://www.sonmicro.com