SparkFun Electronics will be closed on November 26, 2020 and November 27, 2020 for the Thanksgiving holiday. We will begin normal operations at 9:00 AM Mountain Time on November 30, 2020.


Please see all COVID-19 updates here as some shipments may be delayed due to CDC safety and staffing guidelines. If you have an order or shipping question please refer to our Customer Support page. For technical questions please check out our Forums. Thank you for your continued support.

Member #490066

Member Since: November 19, 2013

Country: United States

  • A couple of questions:

    When you touch your main AC socket, you'll get in Europe around 230V @50Hz. That would be using this calculation 220V/100kOhm = 2,2 mA. Which would only cause a "Tingling sensation", which simple isn't true for AC sockets. I know the table and calculations are only for DC circuits, but how do you calculate this for AC?

    And statements like these:

    "Offhand it would seem that a shock of 10,000 volts would be more deadly than 100 volts. But this is not so! Individuals have been electrocuted by appliances using ordinary house currents of 110 volts and by electrical apparatus in industry using as little as 42 volts direct current. The real measure of shock's intensity lies in the amount of current (amperes) forced though the body, and not the voltage. "

    But by using the I = U/R calculations and using this table here, 10kV would always be way more dangerous than 42V. How does that work?

    Best Regards, Rivalo

No public wish lists :(