avatar

Michael Bartlett

Member Since: June 10, 2015

Country: United States

TEMT6000 Ambient Light Sensor Hookup Guide

October 26, 2016

Bring the ability to detect light levels to any project with the SparkFun TEMT6000 Ambient Light Sensor Breakout.

Interactive LED Music Visualizer

May 31, 2016

Use an Arduino and the SparkFun Sound Detector to create visualizations on Addressable RGB LED strips.
  • Hello,

    It is possible to use a direct audio feed. I'm not experienced with using a raw audio feed, but if you didn't happen to catch the video for my spectrum-analyzer visualizer near the end, it is done using a direct audio feed into the spectrum shield. It has on-board 6mm jacks that you can plug standard auxiliary cords into. It splits the incoming audio into several volume-levels of various frequency ranges within the audio, arguably making it a little easier to work with. Some code for how to program the spectrum shield and use it with NeoPixels can be found in this repository.

    As for powering the RedBoard, you can do so through a Mini-B USB, through the on-board barrel jack, or any current between 7 to 15VDC to the "VIN" header. No cables or power supplies are included with the RedBoard itself, but they are available separately on the store page. For example, here are 6-inch and 6-foot versions of a Mini-B USB cable.

    Hope this was helpful; let me know if you have any other questions!

  • Hello, and thank you for the kind words!

    The project as it is shown is approaching the reasonable maximum amount of LEDs if powering them with an Arduino (at least if you'd want to ever show full white on all LEDs at once). It's more dependent on the number of LEDs, so if your 5 meter strip has more than 60 LEDs, then you'll likely need to introduce a separate power supply that is dedicated to just powering the LEDs. The neopixel power recommendations suggest using a lithium-polymer battery, but you could feed in power from an outlet so long as it doesn't exceed 5-6V. For current, their rule of thumb is to multiply the number of LEDs by 60mA and divide by 1000, so for 60 LEDs you'd get 60*60/1000 = 3.6 Amps minimum.

    But of course you said you plan on using different LEDs. First off, it's unlikely that anything which isn't explicitly a "NeoPixel" product will work with the code that is provided on this tutorial, so I'd advise being prepared to rewrite a large portion of the code in that case. The main reason being that the NeoPixel library used in the code is catered to NeoPixels specifically, so you'd need to use a more generic library, such as FastLED. Secondly, if you're wanting to control the color of each individual LED on your strip, make sure it explicitly states that the strip is "addressable" on the product page, otherwise it will likely only be able to display the same color across the entire strand. Otherwise, 5050 RGB is what you're looking for (to be exact, any RGB LED will be 5050; more can be read about that here).

    In short, if you're prepared to rewrite code using a different library then a different addressable RGB strip shouldn't be an issue, just be sure to read up on its specific power requirements to prevent burning it out! Regardless, it's likely you'll need to introduce a dedicated power supply for the LEDs separate from the Arduino for 5 meters.

    Hope this helps, and feel free to ask any other questions you might have!