PNI CommBoard (RS-232, RS-485)

General Description

The CommBoard is a communication interface designed to connect the MicroMag and V2Xe modules to a host system that uses a standard serial interface, such as a PC. It is typically used as a prototyping and evaluation tool for PNI’s line of compass and magnetometer modules. The PNI CommBoard is also used for production when the host system requires a higher level serial protocol to interface to the PNI sensor modules. The first version of the PNI CommBoard features a user selectable RS-232 or RS-485 interface to the host system. The CommBoard developer kit comes with software for the PC that has a graphical user interface (GUI) to control every aspect of the CommBoard and any PNI module that is attached to it.

In the future, different interfaces may be made available as customer needs are identified. Please contact PNI for support with your custom interface high-volume opportunity.

Features

- Small size: 53 x 25 x 11 mm
- RS-232 and RS-485 interfaces for connection with PCs or other serial interface systems
- GUI control software available from PNI, either as part of the developer kit or via the web
- Built-in support for PNI MicroMag and V2Xe sensor modules, as well as several future products
- Voltage regulator converts 6 - 12 VDC to 3 VDC for power to the sensor modules
- Minimal code changes required when upgrading from PNI’s TCM-2 line of tilt compensated magnetometer compass modules

Applications

- Fast compass and magnetometer prototyping
- New product evaluation
- Education, school projects
- Any legacy compass application that has an RS-232 interface but needs the performance of the new PNI products
- Production applications where standards based protocols are preferred over SPI

Ordering Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommBoard (with cable and software)</td>
<td>90009</td>
<td>Each</td>
</tr>
<tr>
<td>CommBoard</td>
<td>11867</td>
<td>Each</td>
</tr>
</tbody>
</table>
Specifications

CAUTION

Stresses beyond those listed under Table 1 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 1. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>DC supply voltage</td>
<td>−0.3 VDC</td>
<td>16 VDC</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input pin voltage (CTS, RxD) to ground</td>
<td>−25 VDC</td>
<td>25 VDC</td>
</tr>
<tr>
<td></td>
<td>Input pin voltage (TxD, RTS) to ground</td>
<td>−13.2 VDC</td>
<td>13.2 VDC</td>
</tr>
<tr>
<td></td>
<td>Input pin voltage (D+, D−) to ground</td>
<td>−13.2 VDC</td>
<td>13.2 VDC</td>
</tr>
<tr>
<td>T_{STRG}</td>
<td>Storage temperature</td>
<td>−40 °C</td>
<td>85 °C</td>
</tr>
</tbody>
</table>

Table 2. Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current - standby (Low power mode, no module loaded)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPM0⁺</td>
<td></td>
<td>14.4 mA RMS</td>
<td></td>
</tr>
<tr>
<td>LPM1⁺</td>
<td></td>
<td>7.0 mA RMS</td>
<td></td>
</tr>
<tr>
<td>LPM2⁺</td>
<td></td>
<td>5.4 mA RMS</td>
<td></td>
</tr>
<tr>
<td>RS-232 Receiver Inputs (CTS, RxD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input threshold low</td>
<td>0.6 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input threshold high</td>
<td>2.0 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-232 Transmitter Output (TxD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage swing (both transmitter outputs loaded with 3 kΩ to GND)</td>
<td>±5 VDC</td>
<td></td>
<td>±5.4 VDC</td>
</tr>
</tbody>
</table>
CommBoard
Specifications

Serial Pin Descriptions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TxD</td>
<td>RS-232 transmitter output (transmitted data)</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
<td>RS-232 transmitter output (reserved)</td>
</tr>
<tr>
<td>3</td>
<td>n/c</td>
<td>not connected</td>
</tr>
<tr>
<td>4</td>
<td>RxD</td>
<td>RS-232 receiver input (received data)</td>
</tr>
<tr>
<td>5</td>
<td>D–</td>
<td>RS-485 transceiver signal (inverting RS-485 signal)</td>
</tr>
<tr>
<td>6</td>
<td>D+</td>
<td>RS-485 transceiver signal (non-inverting RS-485 signal)</td>
</tr>
<tr>
<td>7</td>
<td>n/c</td>
<td>not connected</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>VCC</td>
<td>Supply voltage (5 to 12 VDC)</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Table 3. Serial Pin Descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output resistance (V_{cc} = V+ = V– = 0), output = 2 V</td>
<td>300 Ω</td>
<td>10 MΩ</td>
<td></td>
</tr>
<tr>
<td>Output short circuit current Output = GND</td>
<td>±60 mA</td>
<td>±30 mA</td>
<td></td>
</tr>
<tr>
<td>RS-485 Transceiver Signals (D–, D+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential output voltage (R = 27 Ω)</td>
<td>1.5 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in magnitude of differential output voltage for complementary output states (R = 27 Ω or 50 Ω)</td>
<td>−0.2 VDC</td>
<td>0.2 VDC</td>
<td></td>
</tr>
<tr>
<td>Common mode output voltage (R = 27 Ω or 50 Ω)</td>
<td>3.0 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in magnitude of common mode output voltage for complementary output states (R = 27 Ω or 50 Ω)</td>
<td>0.2 VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output short-circuit current ((V_y) or (V_z) = ±12 V to −7 V)</td>
<td>±250 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. The unit is in normal operating mode with the LEDs enabled.
- b. The unit is in normal operating mode with the LEDs disabled.
- c. The unit is in a Sleep mode and will need to be awakened via the CTS (Wake Up) line.
RS-232 and RS-485 Jumper Settings

Refer to Figure 5 on page 2-36 for jumper locations.

<table>
<thead>
<tr>
<th>Table 4. Jumper Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>JMP1 installed(a)</td>
</tr>
<tr>
<td>JMP1 removed(a)</td>
</tr>
<tr>
<td>JMP2 installed(b)</td>
</tr>
<tr>
<td>JMP2 removed(b)</td>
</tr>
</tbody>
</table>

\(a\). The processor only checks the status of JMP1 at power up. If the position of the jumper needs to be changed, either cycle the power or press the RESET switch after the change has been made.

\(b\). JMP2 must only be installed on the last unit of the network. All other units need to have JMP2 removed for proper RS-485 operation.

Hardware Modes

The CommBoard provides a serial interface to PNI’s sensor modules. Its purpose is to translate a serial command from a host system into the appropriate SPI command. If the sensor module does not support the command, it will return the appropriate error code. Otherwise, it will return the associated data. See the applicable PNI module data sheet for specific information on communication and control using the SPI interface.

- RS-232 mode uses software handshaking to communicate.
 - Xon = ^Q = 0 x 11 (okay to send data)
 - Xoff = ^S = 0 x 13 (stop sending data)
- RS-485 mode is only Half-Duplex.
 - The Continuous Output (go) command is not allowed since Half-Duplex implies queried responses only.
 - The CommBoard acts as a Slave when the JMP1 is removed.

Example

```plaintext
!FF00$C194.74X-106.00Y-403.00Z98.00:E200*1E
!DdSs$(data)*<dcs><es>
```
Table 5. Hardware Modes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>RS-485 data delimiter</td>
</tr>
<tr>
<td>Dd</td>
<td>Destination address</td>
</tr>
<tr>
<td>Ss</td>
<td>Source address</td>
</tr>
<tr>
<td>$</td>
<td>Start data delimiter</td>
</tr>
<tr>
<td>{data}</td>
<td>Selected data output</td>
</tr>
<tr>
<td>*</td>
<td>End data delimiter</td>
</tr>
<tr>
<td><dcs></td>
<td>NMEA checksum for a complete string</td>
</tr>
<tr>
<td><es></td>
<td>End of message based on eol variable <cr> or <lf> or <cr><lf></td>
</tr>
</tbody>
</table>

NOTE

The query and response format must match. All examples in this manual show the query and response of the RS-232 mode. When using RS-485 just add the RS-485 data delimiter, destination address, and source address to the examples shown.

Standard Data Output Modes

PNI Standard Output Mode (sdo=t)

The PNI Standard Output mode may be configured to provide all sensor data available, or only the data you require.

Example

```
$C194.74X-106.00Y-403.00Z98.00:E200*1E
${data}*<dcs><es>
```

Table 6. Standard Output Modes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Start data delimiter</td>
</tr>
<tr>
<td>{data}</td>
<td>Selected data output</td>
</tr>
<tr>
<td>*</td>
<td>End data delimiter</td>
</tr>
<tr>
<td><dcs></td>
<td>NMEA checksum between “$” and “*”</td>
</tr>
<tr>
<td><es></td>
<td>End of message based on eol variable <cr> or <lf> or <cr><lf></td>
</tr>
</tbody>
</table>

NMEA Output Mode (National Marine Electronics Association) (sdo=n)

The NMEA Output mode conforms to the 0183 specification. In this mode, only compass heading information is available.

Example

```
$HCHDM,71.33,M*2F
$HC<sid>,{data},<dt>*<dcs><es>
```
The Raw Output mode allows for the output of the raw, uncorrected data for any or all of the required sensors.

Example

```
$raw,X53Y-420Z0*6E
$raw,{data}*<dcs><es>
```

Table 7. NMEA Output Modes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Start data delimiter</td>
</tr>
<tr>
<td>HC</td>
<td>Heading compass (magnetic), Talker ID</td>
</tr>
<tr>
<td><sid></td>
<td>Heading magnetic = HDM, heading true = HDT, Sentence ID</td>
</tr>
<tr>
<td>,71.33</td>
<td>Heading degrees</td>
</tr>
<tr>
<td><dt></td>
<td>Data type M = magnetic, T = true</td>
</tr>
<tr>
<td>*</td>
<td>End data delimiter</td>
</tr>
<tr>
<td><es></td>
<td>End of message based on eol variable <cr> or <lf> or <cr><lf></td>
</tr>
</tbody>
</table>

Table 8. Raw Output Modes

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>Start data delimiter</td>
</tr>
<tr>
<td>{data}</td>
<td>Selected data output</td>
</tr>
<tr>
<td>*</td>
<td>End data delimiter</td>
</tr>
<tr>
<td><dcs></td>
<td>NMEA checksum between “$” and “*”</td>
</tr>
<tr>
<td><es></td>
<td>End of message based on eol variable <cr> or <lf> or <cr><lf></td>
</tr>
</tbody>
</table>
Command Line Interface

The Command Line interface allows you to use a simple terminal program to communicate with the CommBoard. The Command Line interface also allows applications written in Assembly, Basic, or C to communicate with the CommBoard via the RS-232 or RS-485.
Command Sequence

The sequence of command line events is:

1 Type in the command on the terminal program: cmd?<es>
2 The module processes the command.
3 A reply is send back to you.
 a If no error $cmdreply*<dcs><es>
 b If error $cmdreply:Exxx*<dcs><es>

Table 9. Command Notation Table

<table>
<thead>
<tr>
<th>Command Symbol</th>
<th>Response Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td></td>
<td>Indicates query only command or variable</td>
</tr>
<tr>
<td>=</td>
<td></td>
<td>Indicates assign only command or variable</td>
</tr>
<tr>
<td><aq></td>
<td></td>
<td>Use ? for query or =<val> for assign</td>
</tr>
<tr>
<td><es></td>
<td></td>
<td>Ending sequence <cr> or <lf> or <cr><lf></td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>Start of checksum data</td>
</tr>
<tr>
<td>!</td>
<td></td>
<td>RS-485 address follows</td>
</tr>
<tr>
<td>:</td>
<td></td>
<td>If error occurs; :Ennn</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>End of checksum data</td>
</tr>
<tr>
<td><dcs></td>
<td></td>
<td>Data checksum; between $ and *</td>
</tr>
<tr>
<td>
</td>
<td></td>
<td>start of data</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>Usually a lower case ‘n’ will represent a digit (0-9)</td>
</tr>
<tr>
<td>n.n</td>
<td>n.n</td>
<td>Represents a decimal value (positive or negative)</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>Usually a lower case ‘x’ will represent a hex digit (0-F)</td>
</tr>
<tr>
<td>xx</td>
<td>xx</td>
<td>Represents a Uint8</td>
</tr>
<tr>
<td>xxxx</td>
<td>xxxx</td>
<td>Represent a Uint16</td>
</tr>
<tr>
<td>xxxxxxxx</td>
<td>xxxxxxxx</td>
<td>Represents a Uint32</td>
</tr>
</tbody>
</table>

a. The NMEA XOR checksum method for the values between ‘$’ and ‘*’.

CommBoard
Command Line Interface

Example Command Notation

m<aq><es>

This could be interpreted as a query: m?<es>
This could be interpreted as a response: m=<val><es>

Example Response Notation

$m=<val>*<dcs><er>

Ending Sequence

The CommBoard will accept either <cr> or <lf> or <cr><lf> as an end of line (eol) indicator.

EOL (end of line) Response

The CommBoard will send a response to you in the chosen EOL format.

If (eol=cr) Send ("\r")
If (eol=lf) Send ("\n")
If (eol=crlf) Send ("\r\n")
Error Codes

Error codes are a bitmap to the error that has occurred and are sent when an error condition has occurred.

Example

$C194.74X-106.00Y-403.00Z-800.00:E200*1E
$Cnnn.nnXnnn.nnYnnn.nnZnnn.nn:Exxx*<dcs><er>

Exxx: “xxx” are hex values between 0 - F.

The built-in error command to parse error messages, error ffff<cr><lf>, will list the error codes.

Table 10. Error Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E800</td>
<td>EEPROM1 error a</td>
</tr>
<tr>
<td>E400</td>
<td>EEPROM2 error a</td>
</tr>
<tr>
<td>E200</td>
<td>Module not calibrated</td>
</tr>
<tr>
<td>E100</td>
<td>Module not capable</td>
</tr>
<tr>
<td>E080</td>
<td>Internal error</td>
</tr>
<tr>
<td>E040</td>
<td>Command parameter invalid</td>
</tr>
<tr>
<td>E020</td>
<td>Command/data mode conflict</td>
</tr>
<tr>
<td>E010</td>
<td>Command invalid or unavailable</td>
</tr>
<tr>
<td>E008</td>
<td>Module not found</td>
</tr>
<tr>
<td>E004</td>
<td>Magnetometer out of range</td>
</tr>
<tr>
<td>E002</td>
<td>Inclinometer out of range</td>
</tr>
<tr>
<td>E001</td>
<td>Magnetic distortion alarm b</td>
</tr>
</tbody>
</table>

a. Indicates a possible problem with the unit. Please contact PNI Corporation.
b. Indicates that the magnetic field has changed significantly since the last calibration. See the specific module data sheet for the parameter range.
Action Commands

factory (Factory Settings Restore)

Restores the CommBoard and module to the factory default configuration.

Syntax

factory<es>

Response Format

$factory*<dcs><er>

go (Continuous Output)

Instructs the CommBoard to enter continuous mode. The CommBoard will begin sampling sensors at the rate specified by the Polling Frequency (pollfreq) command.

Syntax

go<es>

Response Format

${selectData}*<dcs><er>

Notes Stopped using the h command.

h (Halt Continuous Output)

Instructs the CommBoard to exit the continuous output mode.

Valid Values

h<es> if halt = d

h if halt = e

Response Format

$h*<dcs><er>
help or ? (Help Menu)
Instructs the CommBoard to display the Help menu.

Syntax help<es> or ?<es?

Response Format Menu Data

id? (Module Identification)
Displays the module type. If the MicroMag responds with either a 01 or 02, contact PNI Corporation as there could possibly be a damaged or unconnected sensor.

Syntax id?<es>

Response Format $id=xx*<dcs><er>

Valid Values

<table>
<thead>
<tr>
<th>xx</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>None</td>
</tr>
<tr>
<td>01</td>
<td>MicroMag (X sensor only)</td>
</tr>
<tr>
<td>02</td>
<td>MicroMag (Y sensor only)</td>
</tr>
<tr>
<td>03</td>
<td>MicroMag (X and Y sensors)</td>
</tr>
<tr>
<td>10</td>
<td>V2Xe</td>
</tr>
</tbody>
</table>

info? (Module Information)
Displays the CommBoard software version, module type, and module software version, if applicable.

Syntax info?<es>

Response Format $info,PNI-commboard Vnnn*<dcs> CommBoard info,{module info}*<dcs> Module
Query Commands

c?
(Compass Update)

Retrieves the compass heading. Based upon the setting of the Data Output Format (sdo) command and the Compass Units (uc) command. Refer to “pollfreq” on page 22.

NOTE
For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax
c?<es>

Response Format
$c{hdg}*$<dcs><er>

Valid Values
hdg = 0 to 359.99
hdg = 0 to 6399

ERROR X
(Error Code List)

Retrieves a description of the error code entered from the CommBoard. Refer to “Error Codes” on page 11.

Syntax
error x<es>

error ffff<es>

Response Format
$error x: (description)*<dcs><er>

Valid Values
x
ffff

I?
(Inclinometer Update)

Retrieves the inclinometer values. The inclinometer output is not available on all modules. Refer to the specific module data sheet for more information.
Query Commands

Syntax i?<es>

Response Format $Pn.nRn.n*<dcs><er>

Valid Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Pitch</td>
</tr>
<tr>
<td>R</td>
<td>Roll</td>
</tr>
</tbody>
</table>

m? (Magnetometer Update)

Retrieves the corrected X, Y, and Z axis magnetometer data. Corrected data is that which is used to calculate heading. The Z sensor output is not available on all modules. Refer to the specific module data sheet for more information.

NOTE For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax m?<es>

Response Format $Xn.nYn.nZn.n*<dcs><er>

Valid Values xn.n

s? (Single Sample Update)

Retrieves the user selected calibration information. Based upon the settings of the various Configuration commands.

NOTE For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax s?<es>

Response Format ${selectedData}*<dcs><er>

Valid Values

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>selectedData</td>
<td>varies according to the user settings</td>
</tr>
</tbody>
</table>
CommBoard
Query Commands

sr? (Single Raw Sample Update)
Retrieves the raw data (uncorrected ASIC output) for the sensors selected. For example, X, Y, and Z axis magnetometers. The Z sensor output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax sr?<es>

Response Format ${selectedRawData}*<dcs><er>

Valid Values selectedRawData varies according to the user settings

t? (Temperature Update)
Retrieves the temperature value. Outputs are based on the setting of the Temperature Units (ut) command. The temperature output is not available in all modules. Refer to the specific data sheet for more information.

Syntax t?<es>

Response Format $Tn.n*<dcs><er> !sdo = t

Valid Values $Tn.n the calibrated temperature sensor output.

x? (X Axis Sensor Update)
Retrieves only the corrected X axis magnetometer values used for heading calculation.

NOTE For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax x?<es>

Response Format $Xn.n*<dcs><er>

Valid Values n.n
y?
(Y Axis Sensor Update)

Retrieves only the corrected Y axis magnetometer values used for heading calculation.

NOTE
For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax
y?<es>

Response Format
$Yn.n*<dcs><er>

Valid Values
n.n

z?
(Z Axis Sensor Update)

Retrieves only the corrected Z axis magnetometer values. The Z sensor output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax
z?<es>

Response Format
$Zn.n*<dcs><er>

Valid Values
n.n
Configuration Commands

b

(Baud Rate)

Sets the baud rate of the CommBoard.

Syntax

`b<aq><es>

Response Format

`$b={value}*<dcs><er`

Valid Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>300</td>
</tr>
<tr>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>1200</td>
</tr>
<tr>
<td>3</td>
<td>2400</td>
</tr>
<tr>
<td>4</td>
<td>4800</td>
</tr>
<tr>
<td>5</td>
<td>9600 (default)</td>
</tr>
<tr>
<td>6</td>
<td>19200</td>
</tr>
<tr>
<td>7</td>
<td>38400</td>
</tr>
<tr>
<td>8</td>
<td>57600</td>
</tr>
</tbody>
</table>

Query Response

`b?<es>

ec

(Compass Data Enable)

Enables the compass data output.

NOTE

For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax

`ec<aq><es>

Response Format

`$ec={value}*<dcs><er`

Valid Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>enabled (default)</td>
</tr>
<tr>
<td>d</td>
<td>disabled</td>
</tr>
</tbody>
</table>

Query Response

`ec?<es>`
echo
(Echo Characters Enable)

Enables character echo, which directs the CommBoard to echo locally typed characters onto the display.

Syntax
`echo<aq><es>`

Response Format
`$echo={value}*<dcs><er>`

Valid Values
- `e` = enabled
- `d` = disabled (default value)

Query Response
`echo?<es>`

em
(Magnetometer Data Enable)

Enables all of the magnetometer data output. For example, `em=e` will set `ex=e`, `ey=e` and `ez=e`.

NOTE
If any axis is disabled after `em=e`, `em?` will still respond with `em=e`.

Syntax
`em<aq><es>`

Response Format
`$em={value}*<dcs><er>`

Valid Values
- `e` = enabled
- `d` = disabled (default)

Query Response
`em?<es>`

eol
(End of Line Enable)

Sets the type of end of line output.

Syntax
`eol<aq><es>`

Response Format
`$eol={value}*<dcs><er>`

Valid Values
- `cr` = output cr after line
- `lr` = output lr after line
- `crlf` = output crlf after line (default)

Query Response
`eol?<es>`
CommBoard Configuration Commands

ep

(Pitch Data Enable)

Enables the pitch data output. Pitch output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax
ep<aq><es>

Response Format
$ep={value}*<dcs><er>

Valid Values
- e enabled
- d disabled (default)

Query Response
ep?<es>

er

(Roll Data Enable)

Enables the roll data output. Roll output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax
er<aq><es>

Response Format
$er={value}*<dcs><er>

Valid Values
- e enabled
- d disabled (default)

Query Response
er?<es>

et

(Temperature Data Enable)

Enables the temperature data output. Temperature output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax
et<aq><es>

Response Format
$et={value}*<dcs><er>

Valid Values
- e enabled
- d disabled (default)

Query Response
et?<es>
\texttt{EX} \hspace{5em} \text{(X Axis Data Enable)}

Enables the X axis data output.

\textbf{Syntax} \hspace{1em}\text{ex}<aq><es>

\textbf{Response Format} \hspace{1em}\$\text{ex}={\text{value}}*<dcs><er>

\textbf{Valid Values} \hspace{1em}e \hspace{1em} \text{enabled}
\hspace{1em}d \hspace{1em} \text{disabled (default)}

\textbf{Query Response} \hspace{1em}\text{ex?<es>}

\texttt{EY} \hspace{5em} \text{(Y Axis Data Enable)}

Enables the Y axis data output.

\textbf{Syntax} \hspace{1em}\text{ey}<aq><es>

\textbf{Response Format} \hspace{1em}\$\text{ey}={\text{value}}*<dcs><er>

\textbf{Valid Values} \hspace{1em}e \hspace{1em} \text{enabled}
\hspace{1em}d \hspace{1em} \text{disabled (default)}

\textbf{Query Response} \hspace{1em}\text{ey?<es>}

\texttt{EZ} \hspace{5em} \text{(Z Axis Data Enable)}

Enables the Z axis data output. The Z sensor output is not available on all modules. Refer to the specific module data sheet for more information.

\textbf{Syntax} \hspace{1em}\text{ez}<aq><es>

\textbf{Response Format} \hspace{1em}\$\text{ez}={\text{value}}*<dcs><er>

\textbf{Valid Values} \hspace{1em}e \hspace{1em} \text{enabled}
\hspace{1em}d \hspace{1em} \text{disabled (default)}

\textbf{Query Response} \hspace{1em}\text{ez?<es>}

\text{CommBoard Configuration Commands}
halt (Single Character Halt Enable)

Enables sending a single Halt (h) command to cancel the Continuous Output (go) mode.

Syntax
\texttt{halt}\textless aq\textgreater <es>

Response Format
\texttt{\$halt={value}*<dcs><er>}

Valid Values
\begin{tabular}{ll}
\texttt{e} & enabled; h (default) \\
\texttt{d} & disabled; h<es>
\end{tabular}

Query Response
\texttt{halt?<es>}

lpm (Low Power Mode)

Selects the low power mode for the CommBoard. Once set to \texttt{lpm=2}, the CommBoard will “wake” from ultra low power and go into \texttt{lpm=0} when it receives a character over the RS-232 interface. Table 2 on page 3 lists the current draw at the different lpm levels.

Syntax
\texttt{lpm}\textless aq\textgreater <es>

Response Format
\texttt{\$lpm={value}*<dcs><er>}

Syntax
\begin{tabular}{ll}
\texttt{0} & no conversion (default) \\
\texttt{1} & LEDs off \\
\texttt{2} & ultra low power
\end{tabular}

Query Response
\texttt{lpm?<es>}

pollfreq (Polling Frequency)

Sets the sample polling frequency of the Continuous Output (go) command.

Syntax
\texttt{pollfreq}\textless aq\textgreater <es>

Response Format
\texttt{\$pollfreq=nn*<dcs><er>}

Syntax
\begin{tabular}{ll}
\texttt{nn} & \\
0 & 1 sample/2 seconds \\
1 - 16 & value in Hz (default is 8)
\end{tabular}

Query Response
\texttt{pollfreq?<es>}

rs485
(RS-485 Slave Address)
Sets the slave address for the CommBoard in RS-485 mode.

Syntax rs485<aq><es>

Response Format $rs485=xx*<dcs><er>

Syntax xx
00 to 7F (default is 00)

Query Response rs485?<es>

sdo
(Data Output Format)
Sets the data output format to PNI standard, NMEA, or RAW. Refer to “Standard Data Output Modes” on page 6 for more information.

Syntax sdo<aq><es>

Response Format $sdo={value}*<dcs><er>

Valid Values
t PNI standard format (default)
n NMEA 0183 compatible format
r raw output format (uncorrected from sensors)

Query Response sdo?<es>

uc
(Compass Units)
Sets the compass output to either degrees or mils.

NOTE
For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax uc<aq><es>

Response Format $uc={value}*<dcs><er>

Valid Values
d degrees (default)
m mils

Query Response uc?<es>
ui (Inclinometer Units)

Sets the inclinometer units to either degrees or mils. Inclinometer output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax ui<aq><es>

Response Format $ui={value}*<dcs><er>

Valid Values
- d degree (default)
- m mils

Query Response ui?<es>

ut (Temperature Units)

Sets the temperature units to either degrees or mils. Thermometer output is not available on all modules. Refer to the specific module data sheet for more information.

Syntax ut<aq><es>

Response Format $ut={value}*<dcs><er>

Valid Values
- f Fahrenheit (default)
- c Celsius

Query Response ut?<es>
Module Commands

CC (Clear Calibration Data)
Clears the previous calibration information. This option is based on the calibration of the PNI Corporation’s TCM2 module and is not available on all modules. Refer to the specific module data sheet for more information.

Syntax
cc<es>

Response Format
$cc*<dcs><er>

cclip (Inclinometer Clip Value)
Sets the clipping value for the maximum positive and negative angle of the inclinometer. When the inclinometer angle exceeds this value, it is clipped to the set value along with an out of range flag. This option is not available on all modules. Refer to the specific module data sheet for more information.

Syntax
cclip<aq><es>

Response Format
$cclip=nn.n*<dcs><er>

Syntax
nn.n 0 to maximum tilt value allowed by the module (0 is the default)

Query Response
cclip?<es>
damping
(Digital Damping Enable)

Enables digital damping on the compass heading output. Refer to specific module data sheet for more information.

NOTE
For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax
damping<aq><es>

Response Format
$damping={value}*<dcs><er>

Syntax
d disabled (default)
e enabled

Query Response
damping?<es>

dampsize
(Digital Damping Sample Size)

Sets the value for the digital damping of the compass heading output. Refer to specific module data sheet for more information.

NOTE
For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax
dampsize<aq><es>

Response Format
$dampsize=nn*<dcs><er>

Syntax

<table>
<thead>
<tr>
<th>nn</th>
<th>1 - 8 for the MicroMag (1 is the default)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - 8 for the V2Xe (1 is the default)</td>
</tr>
</tbody>
</table>

Query Response
dampsize?<es>
lc (Last Calibration Score)

Retrieves the last calibration score. This option is based on the calibration score of the PNI Corporation’s TCM2 module and is not available on all modules. Refer to the specific module data sheet for more information.

Syntax lc?<es>

Response Format $\text{HnVnMn.n*<dcs><er>}$

Syntax n is equal to the score value.

Hn 0 - 9
Vn 0 - 9
Mn.n >0

mag_dec (Declination Value)

Sets the declination offset for a reading of True North. Based on the setting of the Compass Units (uc) command. Positive declination is easterly declination and negative is westerly declination. This is not applied until True North is set to true.

Declination, also called magnetic variation, is the difference between true and magnetic north, relative to a point on the earth. It is measured in degrees east or west of true north. Correcting for declination is accomplished by storing the correct declination angle, and then changing the heading reference from magnetic north to true north. Declination angles vary throughout the world, and change very slowly over time. For the greatest possible accuracy, go to the National Geophysical Data Center web page below to get the declination angle based on your latitude and longitude: http://www.ngdc.noaa.gov/cgi-bin/seg/gmag/fldsnth1.pl

NOTE

For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax mag_dec<aq><es>

Response Format $\text{mag_dec=nnn*<dcs><er>}$

Syntax

nnn = ±180 If $\text{uc} = d$, then mag_dec is in degrees (default is 0)

nnn = ±3200 If $\text{uc} = m$, then mag_dec is in mils (default is 0)

Query Response mag_dec?<es>
mpcal

(Multi-Polled Calibration Enable)

Enables the multi-polled calibration.

NOTE

For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

2-Axis Compass Calibration using the CommBoard

Calibration is the process used with PNI sensor technology to separate the earth’s magnetic field from magnetic field distortions. Magnetic field distortions are created by the environment into which the sensors are mounted. By implementing a simple calibration routine with the sensors in a fixed position within the host system, the maximum and minimum strength fields can be determined and then used to correct the sensor output for the distortions present. A calibration should be performed under the following conditions:

- when the unit is first installed into a host system.
- when the unit is moved.
- when the unit indicates that it is in need of a calibration.

Follow the steps below to perform a calibration.

1. Place the unit to be calibrated into the host system.
2. Set the unit at its intended operating position in as level of a position as possible.
3. Sent the Multi-Polled Calibration Enable (mpcal=e) command. This enables the calibration routine.
4. Rotate the unit through two 360 degree circles while maintaining a level position. The rotations should be no faster than 30 seconds each to achieve the highest possible accuracy.
5. Sent the Multi-Polled Calibration Disable (mpcal=d) command. This disables the calibration routine.
6. Send the Save Settings (save) command to save the calibration information to the CommBoard and the attached module, where applicable.

Syntax

```
mpcal<es>
```

Response Format

```
$mpcal{value}<{dcs}<er>
```

Syntax

```
d  disabled (default)
e  enabled
```

Query Response

```
mpcal?<es>
```
ps (ASIC Period Select)

Sets the value for the ASIC period select. The lowest setting (/32) will provide the fastest response, but the lowest resolution. The highest setting will provide the slowest response, but the highest resolution. Refer to specific module data sheet for more response times and maximum setting allowed.

Syntax ps<aq><es>

Response Format $ps=n*<dcs><er>

Syntax n =
 = 0 = /32
 = 1 = /64
 = 2 = /128
 = 3 = /256
 = 4 = /512 (default)
 = 5 = /1024
 = 6 = /2048
 = 7 = /4096

Query Response ps?<es>

save (Save Settings)

Saves the configuration parameters to the CommBoard and attached module (where applicable). Also used to save calibration coefficients to the CommBoard and attached module (where applicable).

Syntax save<aq><es>

Response Format $save*<dcs><er>
CommBoard

Module Commands

sn (North Mode)

Used to set either True or Magnetic North. True North sets the heading reference to True North or Magnetic North. If the value is set to true, then declination is applied to get the True North heading.

NOTE

For modules that do not have an onboard processor (for example, the MicroMag), the CommBoard will calculate and output this data.

Syntax

\[\text{sn} <\text{aq}> <\text{es}> \]

Response Format

\[\$\text{sn} = \{\text{value}\} <\text{dcs}> <\text{er}> \]

Syntax

- **m** magnetic (default)
- **t** true

Query Response

\[\text{sn} ? <\text{es}> \]

be (Big Endian)

Used to set the endianism of multi-byte parameters (Float32, Uint32, SInt32). If enabled, all parameters communicated between the module and the CommBoard are assumed to be big endian, if disabled they are assumed to be little endian.

NOTE

For modules that do not have an onboard processor (for example, the MicroMag), this setting will not apply.

Syntax

\[\text{be} <\text{aq}> <\text{es}> \]

Response Format

\[\$\text{be} = \{\text{value}\} <\text{dcs}> <\text{er}> \]

Syntax

- **e** enabled (default)
- **d** disabled

Query Response

\[\text{be} ? <\text{es}> \]
SPI Interface to Sensor Module

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCLK</td>
<td>Serial clock output for the SPI port</td>
</tr>
<tr>
<td>2</td>
<td>MISO</td>
<td>Serial data input. Master In Slave Out</td>
</tr>
<tr>
<td>3</td>
<td>MOSI</td>
<td>Serial data output. Master Out Slave In</td>
</tr>
<tr>
<td>4</td>
<td>SSNOT</td>
<td>Active low chip select for SPI port</td>
</tr>
<tr>
<td>5</td>
<td>DRDY</td>
<td>Data ready input</td>
</tr>
<tr>
<td>6</td>
<td>SYNC</td>
<td>Sync output</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>GIO0</td>
<td>Reserved I/O</td>
</tr>
<tr>
<td>9</td>
<td>GIO1</td>
<td>Reserved I/O</td>
</tr>
<tr>
<td>10</td>
<td>GIO2</td>
<td>Reserved I/O</td>
</tr>
<tr>
<td>11</td>
<td>GIO3</td>
<td>Reserved I/O</td>
</tr>
<tr>
<td>12</td>
<td>VDD</td>
<td>Supply voltage, 3 VDC regulated</td>
</tr>
<tr>
<td>13</td>
<td>VCC</td>
<td>Unregulated CommBoard input supply voltage</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>
SPI Port Pin Descriptions

MOSI
Master Out Slave In
The data sent to the CommBoard. Data is transferred most significant bit first. The MOSI line will accept data once the SPI is enabled by taking SSNOT low. Valid data must be presented at least 100 nS before the rising edge of the clock, and remain valid for 100 nS after the edge. New data may be presented to the MOSI pin on the falling edge of SCLK.

SSNOT
Slave Select Line
Selects the CommBoard as the operating slave device. The SSNOT line must be low prior to data transfer and must stay low during the entire transfer. Once the command byte is received by the CommBoard, and the CommBoard begins to execute the command, the SSNOT line can be deselected until the next SPI transfer.

SCLK
Serial Clock
Used to synchronize both the data in and out through the MISO and MOSI lines. SCLK is generated by a master device. SCLK should be 1 MHz or less. The CommBoard is configured to run as a slave device, making it an input. One byte of data is exchanged over eight clock cycles. Data is captured by the master device on the rising edge of SCLK. Data is shifted out and presented to the CommBoard on the MOSI pin on the falling edge of SCLK.

MISO
Master In Slave Out
The data sent from the CommBoard to the master. Data is transferred most significant bit first. The MISO line is placed in a high impedance state if the slave is not selected (SSNOT = 1).

SPI Hardware Handshaking Line Descriptions

SYNC
SYNC is usually low. SYNC must be toggled from low-high-low. This is the SPI reset. This line is used to reset the SPI slave when communications get out of synchronization. SYNC is normally used during the module startup.

DRDY
Data Ready
The module returns DRDY. DRDY is low after a SYNC. Once a command has been received and the data is read, DRDY goes high. This is only used with modules that do not have processor.

NOTE
See the applicable PNI module data sheet for specific information on communication and control using the SPI interface.
PNI CommBoard (RS-232 and RS-485)

LED Status Indicators

1. A live indicator, toggling every 1/2 second.
2. Not used.
3. Not used
4. On during transition, off when not in transition.

Figure 1. CommBoard Status Indicators
CommBoard
SPI Interface to Sensor Module

Communication Block Diagram

![Block Diagram](image-url)

Figure 2. Block Diagram
Assembly Views

Figure 3. Side Views

Figure 4. Top View
Table 13. Connector J1

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TxD</td>
<td>RS-232 transmitter output</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>CTS</td>
<td>Clear to send</td>
</tr>
<tr>
<td>4</td>
<td>RxD</td>
<td>RS-232 receiver input</td>
</tr>
<tr>
<td>5</td>
<td>D–</td>
<td>RS-485 transceiver signals</td>
</tr>
<tr>
<td>6</td>
<td>D+</td>
<td>RS-485 transceiver signals</td>
</tr>
<tr>
<td>7</td>
<td>n/c</td>
<td>Not connected</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>VCC</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Table 14. Connector J2

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>I/O Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCLK</td>
<td>Output</td>
</tr>
<tr>
<td>2</td>
<td>MISO</td>
<td>Input</td>
</tr>
<tr>
<td>3</td>
<td>MOSI</td>
<td>Output</td>
</tr>
<tr>
<td>4</td>
<td>SSNOT</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>DRDY</td>
<td>Input</td>
</tr>
<tr>
<td>6</td>
<td>SYNC</td>
<td>Output</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GIO0</td>
<td>Output low</td>
</tr>
<tr>
<td>9</td>
<td>GIO1</td>
<td>Output low</td>
</tr>
<tr>
<td>10</td>
<td>GIO2</td>
<td>Output low</td>
</tr>
<tr>
<td>11</td>
<td>GIO3</td>
<td>Output low</td>
</tr>
<tr>
<td>12</td>
<td>VDD</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>VCC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>GGND</td>
<td></td>
</tr>
</tbody>
</table>

Table 15. Jumper Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>JMP1 installed</td>
<td>RS-232</td>
</tr>
<tr>
<td>JMP1 removed</td>
<td>RS-485</td>
</tr>
<tr>
<td>JMP2 installed</td>
<td>RS-485 termination</td>
</tr>
<tr>
<td>JMP2 removed</td>
<td>RS-485 no termination</td>
</tr>
</tbody>
</table>
Interchangeable Sensor Module

Unless otherwise stated:

- This document pertains to PNI Corporation part number 11588.
- All units are in metric, millimeters.
- Tolerances are ±0.1 mm.
- Table 13 provides pinout definitions for connector J1.
- Table 14 provides pinout definitions for connector J2.
- The arrow on callout 6 on Figure 6 is defined as pointing in the outward direction.

CAUTION

During installation, ensure that the white silk-screened arrows on both the stacked board and the CommBoard are pointing towards CommBoard LEDs. Do not misalign or plug the stacked board into the 7-pin headers backwards. Refer to Figure 6 and to Figure 7.

![Figure 6. CommBoard with Module Plugged-In](image-url)
Figure 7. CommBoard with Interchangeable Sensor Module

- Item 1, CommBoard
- Item 2, Interchangeable sensor module
Figure 8. Assembled CommBoard
Dual In-Line and DB9 Connectors

Unless otherwise specified:

1. All units are in standard U.S. inches.
2. Cable assembly specifications provided in Table 16.
3. The pin descriptions for the DB9 female connector are provided in Table 17.
4. The pin descriptions for the Dual In-Line connector are provided in Table 18.
5. The 9 VDC power cables should be 3.0 x 0.2 inches in length.

Table 16. Cable Assembly, refer to Callouts on Figure 9

<table>
<thead>
<tr>
<th>Item Number</th>
<th>PNI Part Number</th>
<th>Description</th>
<th>Approved Vendor</th>
<th>Vendor Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10357</td>
<td>10 conductor 24 AWG stranded (7 x 32)</td>
<td>Belden</td>
<td>9540</td>
</tr>
<tr>
<td>2</td>
<td>11772</td>
<td>Crimp housing</td>
<td>FCI</td>
<td>65846-010</td>
</tr>
<tr>
<td>3</td>
<td>11710</td>
<td>Strap battery 9 VDC I-style 4” lead</td>
<td>Keystone</td>
<td>2238</td>
</tr>
<tr>
<td>4</td>
<td>11712</td>
<td>D-SUB 9 connector, female</td>
<td>JIC</td>
<td>DB-09S-UL</td>
</tr>
<tr>
<td>5</td>
<td>11711</td>
<td>Metal hood, U-shaped</td>
<td>JIC</td>
<td>HD-09MTL-V</td>
</tr>
<tr>
<td>6</td>
<td>11773</td>
<td>Connector crimps</td>
<td>FCI</td>
<td>482510-000</td>
</tr>
</tbody>
</table>

Figure 9. Cable Assembly
Table 17. DB9 Connector Pin Descriptions. Refer to Figure 10.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>not connected</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Yellow</td>
<td>TxD (RS-232)</td>
</tr>
<tr>
<td>3</td>
<td>Blue</td>
<td>RxD (RS-232)</td>
</tr>
<tr>
<td>4</td>
<td>not connected</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Green</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>not connected</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td>CTS</td>
</tr>
<tr>
<td>8</td>
<td>not connected</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>not connected</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. DB9 Close-up
Table 18. Dual In-Line Pin Descriptions. Refer to Figure 11.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow</td>
<td>TxD (RS-232)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>not connected</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>CTS</td>
</tr>
<tr>
<td>4</td>
<td>Blue</td>
<td>RxD (RS-232)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>not connected</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>not connected</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>not connected</td>
</tr>
<tr>
<td>8</td>
<td>Green</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>Red</td>
<td>Vsupply 5 to 12 VDC</td>
</tr>
<tr>
<td>10</td>
<td>Black</td>
<td>GND</td>
</tr>
</tbody>
</table>

![Figure 11. Dual In-Line Connector](image)
CommBoard
SPI Interface to Sensor Module