Creative Commons images are CC BY-NC-SA 3.0

$ 9.95

added to your
shopping cart

quantity
In stock 115 in stock
9.95 1+ units
9.45 10+ units
8.96 25+ units
8.46 100+ units

Description: This is a breakout board for the Bosch BMP180 high-precision, low-power digital barometer. The BMP180 offers a pressure measuring range of 300 to 1100 hPa with an accuracy down to 0.02 hPa in advanced resolution mode. It’s based on piezo-resistive technology for high accuracy, ruggedness and long term stability. These come factory-calibrated, with the calibration coefficients already stored in ROM. What makes this sensor great is that it is nearly identical to its former rev, the BMP085!

This breadboard-friendly board breaks out every pin to a 5-pin 0.1" pitch header. VCC can be from 1.8V to 3.6V and is I/O lines are 5V tolerant; we typically run it on a clean, regulated 3.3V supply. The analog and digital supplies (VDDD and VDDA) are tied to a single header pin, but are separately decoupled. It connects to a microcontroller via I²C bus (also known as TWI, or on the Arduino, the “Wire” library).

Features:

  • Digital two wire (I²C, TWI, “Wire”) interface
  • Wide barometric pressure range
  • Flexible supply voltage range (1.8V to 3.6V)
  • Ultra-low power consumption
  • Low noise measurements
  • Factory-calibrated
  • Includes temperature sensor
  • Low-profile with a small footprint

Documents:

Recommended Products

Customer Comments

  • I’ve just been reading the Quick-Start Guide for this board, plus some other educational pages SparkFun has provided (on SI units), and have to say that I am really impressed with the way SparkFun supplies thorough, easy-to-grasp, step-by-step info for users of their products. Great going, SFE! Thanks! My students appreciate your work as well.

  • By any chance will you be making a Breakout for the BME280? Bosch finally has released the updated version of the BMP180 which also has a humidity sensor.

  • Any feedback on the BMP180 versus the T5403?

  • I hope you can make more soon!

    • We’re trying - there’s a global shortage of these parts, and we’re waiting for a large order of them to arrive.

      • Just looking at the Bosch Sensortec site, are there any plans on carrying the BME280? It adds SPI (while keeping I2C) and also has a humidity sensor in the package

        • When it’s available (these parts take a long time to incubate), we’ll take a look at it. Thanks!

  • I hope you can make more soon! We need it!

  • Does the BMP180’s calibration EEPROM store any values that are meant to be negative? Page 15 of the datasheet suggests that the 4th, 5th, and 6th value would be the only ones that can be typed unsigned, but I can’t tell if that’s just specific to the example. A Google search yields the same ambiguity. Does anyone have a definitive answer from experience?

  • You mention an accuracy of down to 0.02 hPa. This is of course impossible for such a low-cost device. Absolute accuracy can be up to a couple of hPa. The 0.02 hPa is the noise floor.

  • The schematic shows solder pads for pullups and tie-ing supplies together. What is the state of these pads on buying the device. Un-soldered makes sense - but the photos show big blobs of solder. Which is it?

    • These come presoldered since that provides the most straightforward configuration for our beginning users. (They are easy to open if you need to). We do try to indicate this on our schematics - if you look closely at the jumpers, we put a line between the pads to indicate a normally-closed connection. Normally-open jumpers will have an air gap between the pads.

  • I’ve got an object for anyone who wants to use this with the Propeller microcontroller: https://github.com/jrleeman/BMP180

  • Hello,

    I’m wondering what the dimensions of the board are (in mm, if possible). Thanks.

  • is there a risk of damaging this if it goes above the 1100 hectopascal range or is that just its range of accuracy?

    • The “absolute maximum ratings” section of the datasheet says it will survive up to 10000 hPa. Typically this means that once you’re back into its measurement range it should function normally.

      • Typically ;) I wouldn’t push absolute maximums on anything more than “absolutely” necessary, though.

  • I would like to interface the sensor to the Raspberry Pi, but I am just learning how to program in python and the only example code on GitHub is for the Arduino. Has anyone written any programs for the Raspberry Pi that they are willing to share? 7/19/14 I was looking on the Adafruit website, and they have a Python library for the the BMP085/180. Here is a link: https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi/using-the-adafruit-bmp-python-library

  • Pls, what is the difference between “Barometric Pressure Sensor” and “Altitude/Pressure Sensor”?

    • From the sensor’s point of view, there is no difference. Both “barometric” and “altitude” sensors only measure absolute atmospheric pressure. The difference is in how you interpret the readings. For barometric, you compute what the pressure should be at the sensor’s (hopefully fixed) altitude; any difference from that is caused by changes in the weather. For altitude, you take a pressure reading, call that the baseline, then for any changes you can back out how far up or down you’ve traveled. But note that pressure changes for both weather and altitude, changes in either can mess up the other measurement.

      • Also note that the above example code for the BMP180 shows you how to use it for either a barometer or an altimeter, so you can do either one with this sensor.

  • Anyone have this working on a due? After going through some forums I found a new Wire.cpp file to help with the I2C on the due, and I went from no connection to getting ridiculous values.

  • We are trying to use Digital Pressure Sensor ( BMP085 ) in our project as an altimeter to measure height of an Antenna from the sea level.

    I am supposed to get 1010.01 hPa of Air pressure so that the corresponding height would be something around 27m from the sea level , But the Pressure reading from the sensor is 1004.5 hPa (i.e. Altitude of 73.10 m) which is not correct according to my GPS Location.

    So please suggest us any way to calibrate this pressure sensor for proper altitude, also mention ways to get faithful reading during seasonal or climatic changes.

    • Did you compensate for local altimeter setting? As you might know, barometric altimetry requires the local setting due to normal changes. GPS altimetry does not.

      • No, I don’t have any idea about these local setting. If you have any app note or some calibration technique for this , then please share.

  • just got mine the other day hooked it up to an uno and it worked great. I then hooked it up to a teensy 3.1 and it would just return the max value for each reading. does the library not work with teensy 3.1?

  • The description says “breaks out every pin to a 6-pin 0.1” pitch header" but I only count 5 holes? Simple typo, or I am missing something?

  • Would this function as a vacuum gauge? I need to get fairly precise (under 5PSI) and having it be digital would be fantastic.

  • Is there any idea when these will be back in stock? (Weeks, months, years?)

  • So these sensors are accurate enough to detect ~ 1-foot change in altitude at sea level?

  • Is this known to work with the RaspberryPi?

    • I can’t speak for this particular breakout board, but the BMP180 sensor itself is, yes.

      I’m a little surprised that SparkFun is offering this breakout for twice the price of the Adafruit BMP180 breakout, which includes a regulator and level-shifting. The cost of the sensor itself certainly doesn’t justify the price. Is it possible that someone miscalculated, SparkFun?

      • Great point, there’s a global shortage of chips right now so we’re paying a premium for them, which worked its way into the initial retail price. We’ve lowered it in anticipation of larger quantities being available.

        Also note that in most cases* you shouldn’t need level shifting to connect this to a 5V system. I2C is an open-drain bus, which means that the host processor will actively drive the signal to ground for “low”, but will let it float to the pull-up voltage (3.3V) for “high”. 3.3V still counts as “high” on most 5V microprocessors, so as long as you’re powering this board with 3.3V (available on most Arduinos), it will work very well when connected to a 5V processor.

        • The fine print is that you shouldn’t mix 5V and 3.3V sensors on the same bus when doing this, and the pullup resistors should be tied to 3.3V (which they are on this board). The weak pull up resistors turned on by Arduino’s Wire library will raise the “high” voltage to 3.6V when combined with the pullup resistors on this board, but that’s within the limits of the chip. So check out the hook-up guide and connect away!
        • Thanks for the additional “fine print” information. I want to ask a clarification on 3.3V vs 5V.

          you shouldn’t mix 5V and 3.3V sensors on the same bus

          I use an Arduino connected to a DS2482-800 (8-channel 1-Wire master) with a network of DS18B20 temp sensors. The 1-Wire master is powered by 5V off of the Arduino and all temp sensors run in parasitic power mode off of the 1-Wire master. My intent is to connect the BMP180 to one of the channels of the 1-Wire master. If I understand your comment correctly, I should not connect a 3.3V sensor to a system running at 5V. I expect the solution is to try powering the entire system on 3.3V and change the pull-up resistors. Not sure if all my temp sensors will still work in parasitic power mode but it’s worth a try. Any thoughts?

          • Note that “1-Wire” is not the same as “Wire”, which is Arduino’s name for I2C (we agree, it’s confusing).

            The BMP180 isn’t designed to function on a 1-Wire bus, so you’ll need to connect it to a Wire/I2C bus. You should be able to run both of these buses simultaneously and separately on an Arduino. The example code has comments on how to connect the BMP180 to your Arduino, and there’s more information on Wire/I2C in our tutorial: https://learn.sparkfun.com/tutorials/i2c. Good luck!

Customer Reviews

4.5 out of 5

Based on 4 ratings:

5 star
2
4 star
2
3 star
0
2 star
0
1 star
0

Outstanding Breakout!!!

Thanks to the previous review I bought this amazingly simple to use breakout, everything was up and running in less than 20 minutes.

Great product.


Review incomplete

I have been unable to get the BMP180 to work with the LinkM (USB to I2C converter) using libusb-1.0. I have had the BMP085 working with legacy libusb-0.1. Libs are very similar so change over should have gone easy. Using same parameters in libusb calls, but in someway things are not equal. So can’t give complete review. The BMP085 certainly worked fine.


Great Product for R/C Aircraft

This barometer is dead simple to use. Example code let me build altitude telemetry into my Radian glider. One Moteino (Arduino with transceiver) + BMP180 in the glider. One Moteino + OLED display on the ground. Moteino provides a 915 MHz link. Shows current altitude above ground and average of last ten readings. Easy to know when the glider is in a thermal. GREAT PRODUCT!


Good, but

It works fine and shows a steady indication of barometric pressure. I want it to work independent of a computer. I have several LCD shields and I would like to redirect the output to the LCD. Right now I have several projects going on, so that may take a while.