BATT-MON 3 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the BQ35100, battery fuel gauge, and end-of-service monitor from Texas Instruments. The BQ35100 provides highly configurable fuel gauging for non-rechargeable (primary) lithium batteries without requiring a forced battery discharge. It uses patented TI gauging algorithms to support the option to replace an old battery with a new one seamlessly. It provides accurate results with ultra-low average power consumption, alongside an I2C interface through which the host can read the gathered data. This Click board™ can be used in battery systems suitable for dynamic load and large ambient temperature change applications, for battery status reporting and diagnostics with early failure detection for flow meter systems, or to extend battery run-time with accurate battery gauging in various applications.

BATT-MON 3 Click is supported by a mikroSDK compliant library, which includes functions that simplify software development.

BATT-MON 3 Click as its foundation uses the BQ35100, battery fuel gauge, and end-of-service monitor from Texas Instruments that provides gas gauging for lithium thionyl chloride (Li-SOCl2) and lithium manganese dioxide (Li-MnO2) primary batteries without requiring any forced discharge of the battery. The lithium primary gas gauging function uses voltage, current, and temperature data to provide accurate results alongside an ultra-low average power consumption. It also uses patented TI gauging algorithms to support the option to replace an old battery with a new one seamlessly.

This device measures the BT input using the integrated delta-sigma ADC, scaled by the internal translation network, through the ADC. A calibration process determines the translation gain function. It can also operate in three distinct modes: accumulator (ACC), state-of-health (SOH), and end-of-service (EOS) mode. The device can be configured and used for only one of these modes in the field, as it is not intended to be able to switch between modes when in regular use.

BATT-MON 3 Click communicates with MCU using the standard I2C 2-Wire interface to read data and configure settings with a maximum frequency of 400kHz. The BQ35100 is intended for systems where the battery electronics need to consume a low average current. This board is designed to be fully powered OFF when not required by controlling the enable pin routed to the PWM pin of the mikroBUS™ socket. When this pin is low, the Click board™ is fully powered down with no measurements being made, and no data is retained unless in a flash.

An alarm and interrupt function is also available that outputs an interrupt signal to the ALR pin of the mikroBUS™ socket based on a variety of configurable status and data options. This feature is also indicated by a red LED marked as ALR. Besides, this Click board™ also features battery pack temperature sensing through an integrated temperature sensor or an external NTC thermistor connected to the onboard header labeled as NTC, using the integrated delta-sigma ADC where only one source can be used at a time.

This Click board™ can operate with both 3.3V and 5V logic voltage levels selected via the VCC SEL jumper. This way, it is allowed for both 3.3V and 5V capable MCUs to use the communication lines properly. However, the Click board™ comes equipped with a library that contains easy-to-use functions and an example code that can be used, as a reference, for further development.

  • Interface: I2C
  • Compatibility: mikroBUS™
  • Dimensions: 42.9 x 25.4mm
  • Input Voltage: 3.3V or 5V
  • Battery Capacity: Min. 100 mAh, Max. 32,000 mAh
  • Resolution: Min. 14 bits, Max. 15 bits
  • Operating Temperature Range: Min. -40°C, Typ. +25°C, Max. +85°C


Looking for answers to technical questions?

We welcome your comments and suggestions below. However, if you are looking for solutions to technical questions please see our Technical Assistance page.

Customer Reviews

No reviews yet.